Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excessive worrying may have co-evolved with intelligence

13.04.2012
What is usually seen as pathology may aid survival of the species

Worrying may have evolved along with intelligence as a beneficial trait, according to a recent study by scientists at SUNY Downstate Medical Center and other institutions.

Jeremy Coplan, MD, professor of psychiatry at SUNY Downstate, and colleagues found that high intelligence and worry both correlate with brain activity measured by the depletion of the nutrient choline in theGlaxoSmithKline Pharmaceuticals, Sackler Institute of Columbia University, NIH/National Institute of Mental Health, National Alliance for Research on Schizophrenia and Depression, Psychiatric Institute subcortical white matter of the brain. According to the researchers, this suggests that intelligence may have co-evolved with worry in humans.

"While excessive worry is generally seen as a negative trait and high intelligence as a positive one, worry may cause our species to avoid dangerous situations, regardless of how remote a possibility they may be," said Dr. Coplan. "In essence, worry may make people 'take no chances,' and such people may have higher survival rates. Thus, like intelligence, worry may confer a benefit upon the species."

In this study of anxiety and intelligence, patients with generalized anxiety disorder (GAD) were compared with healthy volunteers to assess the relationship among intelligence quotient (IQ), worry, and subcortical white matter metabolism of choline. In a control group of normal volunteers, high IQ was associated with a lower degree of worry, but in those diagnosed with GAD, high IQ was associated with a greater degree of worry. The correlation between IQ and worry was significant in both the GAD group and the healthy control group. However, in the former, the correlation was positive and in the latter, the correlation was negative. Eighteen healthy volunteers (eight males and 10 females) and 26 patients with GAD (12 males and 14 females) served as subjects.

Previous studies have indicated that excessive worry tends to exist both in people with higher intelligence and lower intelligence, and less so in people of moderate intelligence. It has been hypothesized that people with lower intelligence suffer more anxiety because they achieve less success in life.

The results of their study, "The Relationship between Intelligence and Anxiety: An Association with Subcortical White Matter Metabolism," was published in a recent edition of Frontiers in Evolutionary Neuroscience, and can be read at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269637/pdf/fnevo-03-00008.pdf.

The study was selected and evaluated by a member of the Faculty of 1000 (F1000), placing it in their library of the top 2% of published articles in biology and medicine.

SUNY Downstate Medical Center, founded in 1860, was the first medical school in the United States to bring teaching out of the lecture hall and to the patient's bedside. A center of innovation and excellence in research and clinical service delivery, SUNY Downstate Medical Center comprises a College of Medicine, Colleges of Nursing and Health Related Professions, a School of Graduate Studies, a School of Public Health, University Hospital of Brooklyn, and an Advanced Biotechnology Park and Biotechnology Incubator.

SUNY Downstate ranks eighth nationally in the number of alumni who are on the faculty of American medical schools. More physicians practicing in New York City have graduated from SUNY Downstate than from any other medical school.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>