Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Has evolution given humans unique brain structures?

25.02.2013
Humans have at least two functional networks in their cerebral cortex not found in rhesus monkeys.

This means that new brain networks were likely added in the course of evolution from primate ancestor to human. These findings, based on an analysis of functional brain scans, were published in a study by neurophysiologist Wim Vanduffel (KU Leuven and Harvard Medical School) in collaboration with a team of Italian and American researchers.

Our ancestors evolutionarily split from those of rhesus monkeys about 25 million years ago. Since then, brain areas have been added, have disappeared or have changed in function. This raises the question, ‘Has evolution given humans unique brain structures?’. Scientists have entertained the idea before but conclusive evidence was lacking. By combining different research methods, we now have a first piece of evidence that could prove that humans have unique cortical brain networks.

Professor Vanduffel explains: "We did functional brain scans in humans and rhesus monkeys at rest and while watching a movie to compare both the place and the function of cortical brain networks. Even at rest, the brain is very active. Different brain areas that are active simultaneously during rest form so-called 'resting state’ networks. For the most part, these resting state networks in humans and monkeys are surprisingly similar, but we found two networks unique to humans and one unique network in the monkey.”

“When watching a movie, the cortex processes an enormous amount of visual and auditory information. The human-specific resting state networks react to this stimulation in a totally different way than any part of the monkey brain. This means that they also have a different function than any of the resting state networks found in the monkey. In other words, brain structures that are unique in humans are anatomically absent in the monkey and there no other brain structures in the monkey that have an analogous function. Our unique brain areas are primarily located high at the back and at the front of the cortex and are probably related to specific human cognitive abilities, such as human-specific intelligence."

The study used fMRI (functional Magnetic Resonance Imaging) scans to visualise brain activity. fMRI scans map functional activity in the brain by detecting changes in blood flow. The oxygen content and the amount of blood in a given brain area vary according to a particular task, thus allowing activity to be tracked.

Contact person:
Professor Wim Vanduffel, Neurophysiology Research Group, Faculty of Medicine, KU Leuven, tel. +32 (0)16 33 06 66, wim.vanduffel@med.kuleuven.be
More information:
The full text of the study, "Evolutionary-Novel Functional Networks in the Human Brain?", is available on the website of The Journal of Neuroscience: http://www.jneurosci.org/content/33/8/3259.abstract

| KU Leuven
Further information:
http://www.med.kuleuven.be

Further reports about: MRI scan brain area brain networks brain structure rhesus monkeys

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>