Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution drives many plants and animals to be bigger, faster

08.03.2011
For the vast majority of plants and animals, the 'bigger is better' view of evolution may not be far off the mark, says a new broad-scale study of natural selection. Organisms with bigger bodies or faster growth rates tend to live longer, mate more and produce more offspring, whether they are deer or damselflies, the authors report.

Researchers working at the National Evolutionary Synthesis Center compiled and reviewed nearly 150 published estimates of natural selection, representing more than 100 species of birds, lizards, snakes, insects and plants. The results confirm that for most plants and animals, larger body size and earlier seasonal timing — such as earlier breeding, blooming or hatching —confer significant survival advantages.

"It's a very widespread pattern," said co-author Joel Kingsolver of the University of North Carolina at Chapel Hill.

What's puzzling, the authors say, is not why the 'bigger is better' model of evolution is so common, but why the 'Goldilocks' model is so rare: If organisms are supposedly well-adapted to their particular circumstances, then why is it so seldom the case that the individuals that survive and reproduce the best are the ones that are not too small, nor too big, but just right?

A classic example is human birth weight. Newborns of intermediate size are more likely to survive than newborns that are extremely large or extremely small. In lieu of driving organisms to be bigger and faster over time, the 'Goldilocks' model — also known as stabilizing selection — favors moderation, the authors explained. But for the vast majority of organismal traits, this pattern is the exception, not the rule. "Rarely is it the case that the individuals that survive and reproduce the best are the ones in the middle," Kingsolver said.

The result is puzzling because the conventional wisdom is that most creatures are well adapted to the environments in which they live. "When we look at nature, we see all these amazing ways species are well-adapted to their lifestyles and habitats," Kingsolver said. "Yet the organisms that are bigger, faster, still do the best in terms of survival and reproduction. Why aren't they already just the right size or speed, or pretty close to it?" he asked.

The authors explored three possible explanations. One possibility, they explained, is that evolving to be bigger, faster, or flashier comes at a cost. "A trait that's good for reproduction or fertility may be bad for survival — there may be a tradeoff," Kingsolver said. "In guppies, for example, brightly colored males have greater mating success, but they're also more likely to be eaten by predators," said co-author Sarah Diamond, currently a postdoctoral researcher at North Carolina State University.

Another possibility is that environments simply change from one season to the next, such that the traits that confer the greatest advantage change over time. "In Darwin's finches, for example, there are years where large-beaked birds have an advantage because large seeds are more abundant, and years where smaller-beaked birds do better because small seeds are more abundant," Diamond said.

A third possibility is that natural selection drives one trait in one direction, while simultaneously driving another, genetically correlated trait in the opposite direction. "For example it may be good for flying insects to evolve larger wings and smaller bodies for more efficient flight," Kingsolver said, "but if insects with larger wings also have larger bodies, they can't evolve both."

The third explanation frequently limits the evolution of body size, the authors found, but not traits related to timing, or body shape, or coloration. "Size is the one case where correlated selection is important," Kingsolver said.

The findings appear in the March 2011 issue of American Naturalist.

CITATION: Kingsolver, J. and S. Diamond (2011). "Phenotypic selection in natural populations: what limits directional selection?" American Naturalist 177(3): 346-357. doi:10.1086/658341.

Study data are available in the Dryad Digital Repository at http://datadryad.org/handle/10255/dryad.7997.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>