Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution drives many plants and animals to be bigger, faster

08.03.2011
For the vast majority of plants and animals, the 'bigger is better' view of evolution may not be far off the mark, says a new broad-scale study of natural selection. Organisms with bigger bodies or faster growth rates tend to live longer, mate more and produce more offspring, whether they are deer or damselflies, the authors report.

Researchers working at the National Evolutionary Synthesis Center compiled and reviewed nearly 150 published estimates of natural selection, representing more than 100 species of birds, lizards, snakes, insects and plants. The results confirm that for most plants and animals, larger body size and earlier seasonal timing — such as earlier breeding, blooming or hatching —confer significant survival advantages.

"It's a very widespread pattern," said co-author Joel Kingsolver of the University of North Carolina at Chapel Hill.

What's puzzling, the authors say, is not why the 'bigger is better' model of evolution is so common, but why the 'Goldilocks' model is so rare: If organisms are supposedly well-adapted to their particular circumstances, then why is it so seldom the case that the individuals that survive and reproduce the best are the ones that are not too small, nor too big, but just right?

A classic example is human birth weight. Newborns of intermediate size are more likely to survive than newborns that are extremely large or extremely small. In lieu of driving organisms to be bigger and faster over time, the 'Goldilocks' model — also known as stabilizing selection — favors moderation, the authors explained. But for the vast majority of organismal traits, this pattern is the exception, not the rule. "Rarely is it the case that the individuals that survive and reproduce the best are the ones in the middle," Kingsolver said.

The result is puzzling because the conventional wisdom is that most creatures are well adapted to the environments in which they live. "When we look at nature, we see all these amazing ways species are well-adapted to their lifestyles and habitats," Kingsolver said. "Yet the organisms that are bigger, faster, still do the best in terms of survival and reproduction. Why aren't they already just the right size or speed, or pretty close to it?" he asked.

The authors explored three possible explanations. One possibility, they explained, is that evolving to be bigger, faster, or flashier comes at a cost. "A trait that's good for reproduction or fertility may be bad for survival — there may be a tradeoff," Kingsolver said. "In guppies, for example, brightly colored males have greater mating success, but they're also more likely to be eaten by predators," said co-author Sarah Diamond, currently a postdoctoral researcher at North Carolina State University.

Another possibility is that environments simply change from one season to the next, such that the traits that confer the greatest advantage change over time. "In Darwin's finches, for example, there are years where large-beaked birds have an advantage because large seeds are more abundant, and years where smaller-beaked birds do better because small seeds are more abundant," Diamond said.

A third possibility is that natural selection drives one trait in one direction, while simultaneously driving another, genetically correlated trait in the opposite direction. "For example it may be good for flying insects to evolve larger wings and smaller bodies for more efficient flight," Kingsolver said, "but if insects with larger wings also have larger bodies, they can't evolve both."

The third explanation frequently limits the evolution of body size, the authors found, but not traits related to timing, or body shape, or coloration. "Size is the one case where correlated selection is important," Kingsolver said.

The findings appear in the March 2011 issue of American Naturalist.

CITATION: Kingsolver, J. and S. Diamond (2011). "Phenotypic selection in natural populations: what limits directional selection?" American Naturalist 177(3): 346-357. doi:10.1086/658341.

Study data are available in the Dryad Digital Repository at http://datadryad.org/handle/10255/dryad.7997.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>