Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No evidence of residential property value impacts near US wind turbines

28.08.2013
Finding comes from new Berkeley Lab study

Lawrence Berkeley National Laboratory (Berkeley Lab) analyzed more than 50,000 home sales near 67 wind facilities in 27 counties across nine U.S. states, yet was unable to uncover any impacts to nearby home property values.

"This is the second of two major studies we have conducted on this topic [the first was published in 2009, see below], and in both studies [using two different datasets] we find no statistical evidence that operating wind turbines have had any measurable impact on home sales prices," says Ben Hoen, the lead author of the new report.

Hoen is a researcher in the Environmental Energy Technologies Division of Berkeley Lab.

The new study used a number of sophisticated techniques to control for other potential impacts on home prices, including collecting data that spanned well before the wind facilities' development was announced to after they were constructed and operating. This allowed the researchers to control for any pre-existing differences in home sales prices across their sample and any changes that occurred due to the housing bubble.

This study, the most comprehensive to-date, builds on both the previous Berkeley Lab study as well a number of other academic and published U.S. studies, which also generally find no measurable impacts near operating turbines.

"Although there have been claims of significant property value impacts near operating wind turbines that regularly surface in the press or in local communities, strong evidence to support those claims has failed to materialize in all of the major U.S. studies conducted thus far", says Hoen. "Moreover, our findings comport with the large set of studies that have investigated other potentially similar disamenities, such as high voltage transmission lines, land fills, and noisy roads, which suggest that widespread impacts from wind turbines would be either relatively small or non-existent."

The report was authored by Ben Hoen (Berkeley Lab), Jason P. Brown (formerly USDA now Federal Reserve Bank of Kansas City), Thomas Jackson (Texas A & M and Real Property Analytics), Ryan Wiser (Berkeley Lab), Mark Thayer (UC San Diego) and Peter Cappers (Berkeley Lab). The research was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

Additional Information:

2013 Study: "A Spatial Hedonic Analysis of the Effects of Wind Energy Facilities on Surrounding Property Values in the United States" download here: http://emp.lbl.gov/sites/all/files/lbnl-6362e.pdf

2009 Study:"The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis" download here: http://emp.lbl.gov/sites/all/files/REPORTlbnl-2829e.pdf

More information about DOE's Wind Program is here: http://www1.eere.energy.gov/wind/index.html

For more information on the report, contact Ben Hoen (bhoen@lbl.gov, 845-758-1896), or Ryan Wiser (RHWiser@lbl.gov, 510-486-5474).

Allan Chen | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>