Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence of drought-prone pasts may foretell New York’s and Atlanta’s futures

22.03.2011
New York City and Atlanta have both experienced droughts in the past few decades that required them to implement water restrictions and conservation measures.

However, a new study of tree-ring data spanning the past 400 years indicates that droughts in those cities and their surrounding regions were typically longer and more frequent centuries ago than they were for most of the 20th century.

In addition, recent decades have brought longer drought cycles similar to those prevalent before the mid-1800s. A return to drought patterns of past centuries, the study’s authors say, could seriously strain the water resources of both of those densely populated regions.

“We can handle two to three-year droughts, but if three and four and five-year droughts are possible, we’re not prepared,” says Neil Pederson, a research professor with the Tree Ring Laboratory at Columbia University’s Lamont-Doherty Earth Observatory in Palisades, New York, which created the new tree-ring drought records. He adds that the familiar scene in the western U.S. of fights and lawsuits over water “is starting to play out here in the East.”

By the fall of 2007, during the second year of a three-year drought, Atlanta had roughly three month’s supply of water remaining while Athens, Georgia, was down to approximately 50 days. Another drought dramatically lowered New York City reservoirs to 33 percent of capacity in 1981. A return to historic climate patterns would bring more frequent and prolonged droughts, Pederson says.

He and his graduate students collected tree cores from several species of trees in the Atlanta and New York regions that have lived as long 500 years. The team included additional species that are not usually sampled for drought records, including tulip poplar and hickory, to help better account for annual variability and give a more accurate picture of the wet and dry periods in these regions. It usually takes at least 18 different tree cores to get a statistically accurate drought record in each forest, Pederson says, and being able to draw on additional tree species helps them find more very old trees that can provide additional data.

The cores show that there were three severe droughts in the 1700s in the southern Appalachian region that were soon followed by regional die-offs of trees with about 8 to 10 percent of the trees being lost.

Today, “these relatively minor droughts are setting off water conservation measures and draining reservoirs. That’s the scary thing,” given that longer droughts that may lie ahead, he says.

Pederson will present the findings on March 22 at a conference here on “Climates, Past Landscapes, and Civilizations.” The conference, organized by the American Geophysical Union, has brought together nearly 100 scientists to discuss the latest research findings in archeology, paleoclimatology, paleoecology, and other fields that reveal how changes in regional and global climate have impacted the development and fates of societies.

To read the abstract of this presentation, please use this search engine: http://agu-cc11cp.abstractcentral.com/itin.jsp. Click on Search, type Pederson in the Author/Presenter field and click on the orange Search button at the bottom.

Contact information for the author:
Neil Pederson: phone: +1 (845) 519-5479, Email: adk@ldeo.columbia.edu

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org
http://agu-cc11cp.abstractcentral.com/itin.jsp

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>