Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence of drought-prone pasts may foretell New York’s and Atlanta’s futures

22.03.2011
New York City and Atlanta have both experienced droughts in the past few decades that required them to implement water restrictions and conservation measures.

However, a new study of tree-ring data spanning the past 400 years indicates that droughts in those cities and their surrounding regions were typically longer and more frequent centuries ago than they were for most of the 20th century.

In addition, recent decades have brought longer drought cycles similar to those prevalent before the mid-1800s. A return to drought patterns of past centuries, the study’s authors say, could seriously strain the water resources of both of those densely populated regions.

“We can handle two to three-year droughts, but if three and four and five-year droughts are possible, we’re not prepared,” says Neil Pederson, a research professor with the Tree Ring Laboratory at Columbia University’s Lamont-Doherty Earth Observatory in Palisades, New York, which created the new tree-ring drought records. He adds that the familiar scene in the western U.S. of fights and lawsuits over water “is starting to play out here in the East.”

By the fall of 2007, during the second year of a three-year drought, Atlanta had roughly three month’s supply of water remaining while Athens, Georgia, was down to approximately 50 days. Another drought dramatically lowered New York City reservoirs to 33 percent of capacity in 1981. A return to historic climate patterns would bring more frequent and prolonged droughts, Pederson says.

He and his graduate students collected tree cores from several species of trees in the Atlanta and New York regions that have lived as long 500 years. The team included additional species that are not usually sampled for drought records, including tulip poplar and hickory, to help better account for annual variability and give a more accurate picture of the wet and dry periods in these regions. It usually takes at least 18 different tree cores to get a statistically accurate drought record in each forest, Pederson says, and being able to draw on additional tree species helps them find more very old trees that can provide additional data.

The cores show that there were three severe droughts in the 1700s in the southern Appalachian region that were soon followed by regional die-offs of trees with about 8 to 10 percent of the trees being lost.

Today, “these relatively minor droughts are setting off water conservation measures and draining reservoirs. That’s the scary thing,” given that longer droughts that may lie ahead, he says.

Pederson will present the findings on March 22 at a conference here on “Climates, Past Landscapes, and Civilizations.” The conference, organized by the American Geophysical Union, has brought together nearly 100 scientists to discuss the latest research findings in archeology, paleoclimatology, paleoecology, and other fields that reveal how changes in regional and global climate have impacted the development and fates of societies.

To read the abstract of this presentation, please use this search engine: http://agu-cc11cp.abstractcentral.com/itin.jsp. Click on Search, type Pederson in the Author/Presenter field and click on the orange Search button at the bottom.

Contact information for the author:
Neil Pederson: phone: +1 (845) 519-5479, Email: adk@ldeo.columbia.edu

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org
http://agu-cc11cp.abstractcentral.com/itin.jsp

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>