Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich study on salmonella self-destruction

22.08.2008
Self-destruction for a common cause

ETH Zurich biologists, led by Professors Martin Ackermann and Wolf-Dietrich Hardt, in collaboration with Michael Doebeli of the University of British Colombia in Vancouver (CN), have been able to describe how random molecular processes during cell division allow some cells to engage in a self-destructive act to generate a greater common good, thereby improving the situation of the surviving siblings.

Survival strategy

The biologists investigated this unusual biological concept using the pathogenic salmo-nella bacteria as an example. Diseases caused by salmonellae are very unpleasant and even life-threatening. When contaminated food is consumed – for example, egg-based foods or chicken and meat – salmonella bacteria enter the gastro-intestinal tract where it triggers infection. Vomiting and diarrhoea can last for days.

Normally, salmonellae grow poorly in the intestine because they are not competitive with other bacteria of the gut. However, this dynamic changes if salmonellae induce an inflammatory response, namely diarrhoea, which suppresses the other bacteria. The inflammation is triggered by salmonellae penetrating into the intestinal tissues. Once inside, salmonellae is killed by the immune system. This in turn creates a conflict: salmonellae are either suppressed by the other bacteria in the gut, or die while trying to eliminate these competitors.

As Ackermann, Hardt and Doebeli report, salmonellae have found a surprising solution to this conflict. Inside the gut, the samonella bacteria forms two groups that engage in job-sharing. A first group invades the tissue, triggers an inflammation, then dies. A second group waits inside the gut until the inactivation of the normal intestinal flora gives them an opportunity to strike.This second group then multiplies unhindered.

Random processes and self-sacrifice

What determines whether an individual salmonella bacterium cell self-sacrifices, or whether it will wait and benefit from the sacrifice of others? The two groups are clones of the same genotype, so genetic differences do not play a role. Rather, the difference between the two groups is a result of random molecular processes during cell division. Cellular components are randomly distributed between the two daughter cells with each cell receiving a different amount. The resulting imbalance can be amplified and lead to different properties of the clonal siblings.

In recent years it has been recognized that such random processes in a cell can have a large influence on individual cells. The work by the ETH Zurich researchers reveals a new biological explanation for this phenomenon. The two salmonella phenotypes share their work, with the result being that they achieve what a single phenotype on its own would not be capable of doing. This scenario is fundamentally different from the usual explanations and presupposes that individual phenotypes interact and have an effect on one another. The self-sacrifice of phenotypes may be quite common among pathogenic bacteria, for example, among the pathogens causing diarrhoea after antibiotic treatment (clostridia) or pneumonia (streptococci).

Essential findings

Professor Ackermann says that “Random processes could promote job-sharing in many different types of organisms.” Many bacteria manufacture substances which are toxic to their hosts but which are only released into the host environment if the bacteria sacrifice themselves - if this is the sole method to get the toxin out of the cell. This is why every cell makes a decision: toxin and death or no toxin.

He stresses that it would not have been possible to study this theory so thoroughly with-out the collaboration that took place among the three specialist groups: Professor Hardt’s group specialises in salmonella infections; Professor Doebeli is a mathematician and theoretical biologist; and Professor Ackermann’s group focuses on phenotypic noise.

Roman Klingler | alfa
Further information:
http://www.cc.ethz.ch

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>