Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen replacement therapy speeds ovarian cancer growth

21.10.2010
Estrogen therapy used by menopausal women causes a type of ovarian cancer to grow five times faster, according to a new study by researchers at the University of Colorado Cancer Center.

Menopausal estrogen replacement therapy (ERT) also significantly increases the likelihood of the cancer metastasizing to the lymph nodes, according to the study, which will be published in the Nov. 1 issue of Cancer Research.

The study was released online Oct. 19, 2010. Cancer Research, published by the American Association for Cancer Research, is the world's largest circulation medical journal devoted specifically to cancer research.

The effect of ERT was shown in mouse models of estrogen receptor positive(ER+) ovarian cancer, which accounts for about 60 percent of all human ovarian cancer cases. Ovarian cancer is one of the deadliest cancers affecting women. This year alone, nearly 22,000 women will be newly diagnosed with ovarian cancer and an estimated 13,850 women will die from the disease, according to the National Cancer Institute.

"We showed that estrogen replacement substantially increases proliferation and risk of distant lymph node metastasis in ER+ tumors," says Monique Spillman, MD, PhD, the study's lead researcher, a gynecologic oncologist at University of Colorado Hospital and assistant professor at of obstetrics and gynecology at the University of Colorado School of Medicine.

For the first time, Spillman and her team measured ovarian cancer growth in the abdomen of mice using novel techniques for visualizing the cancer. In mice with ER+ ovarian cancer cells, which were tagged with a firefly-like fluorescent protein that allowed them to be tracked, the introduction of estrogen therapy made the tumors grow five times faster than in mice that did not receive the ERT. The risk of the cancer moving to the lymph nodes increased to 26 percent in these mice compared with 6 percent in mice that did not receive ERT.

The team also found that the estrogen-regulated genes in ovarian cancer reacted differently than ER+ genes found in breast cancer, helping to explain why current anti-estrogen therapies used with breast cancer, such as Tamoxifen, are largely ineffective against ovarian cancer.

"Breast cancer and ovarian cancer are often linked when talking about hormone replacement therapy, but we found that only 10 percent of the ER+ genes overlapped," Spillman says. "We were able to identify estrogen-regulated genes specific to ER+ ovarian cancer that are not shared with ER+ breast cancers. We believe these genes can be specifically targeted with new anti-estrogen therapies that could more effectively treat ER+ ovarian cancers."

Spillman and her team now will begin to screen current antiestrogen therapies against the newly identified ovarian cancer genes to identify the pathways and compounds that are more likely to effectively treat ER+ ovarian cancer.

This study looked at the effect of estrogen replacement therapy in mice that already possessed ER+ ovarian cancer cells. It did not test whether the estrogen replacement actually could cause the development of these cancer cells. The study also dealt only with estrogen replacement, which is linked to higher risks of ovarian cancer, not combined estrogen/progesterone therapy that is used with women who retain their uteruses.

This research is too early to draw implications for use of estrogen replacement therapy in women, Spillman cautions. "We cannot make clinical recommendations based on what is happening in mice," says Spillman, one of just eight gynecological oncologists in Colorado. "Every woman is different and needs to talk to her doctor about the decision to use hormone replacement therapy."

The study was funded by a Gynecologic Cancer Foundation Career Development Award and the Liz Tilberis Scholars Award from the Ovarian Cancer Research Foundation. This competitive award, a $450,000 three-year grant, is given to early-career researchers who are developing techniques for early diagnosis and improved care for women with ovarian cancer.

About the University of Colorado Cancer Center

The University of Colorado Cancer Center is the Rocky Mountain region's only National Cancer Institute-designated comprehensive cancer center. NCI has given only 40 cancer centers this designation, deeming membership as "the best of the best." Headquartered on the University of Colorado Denver Anschutz Medical Campus, UCCC is a consortium of three state universities (Colorado State University, University of Colorado at Boulder and University of Colorado Denver) and five institutions (The Children's Hospital, Denver Health, Denver VA Medical Center, National Jewish Health and University of Colorado Hospital). Together, our 440+ members are working to ease the cancer burden through cancer care, research, education and prevention and control.

Lynn Clark | EurekAlert!
Further information:
http://www.ucdenver.edu
http://www.uccc.info

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>