Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Erratic, extreme day-to-day weather puts climate change in new light

16.11.2011
The first climate study to focus on variations in daily weather conditions has found that day-to-day weather has grown increasingly erratic and extreme, with significant fluctuations in sunshine and rainfall affecting more than a third of the planet.

Princeton University researchers recently reported in the Journal of Climate that extremely sunny or cloudy days are more common than in the early 1980s, and that swings from thunderstorms to dry days rose considerably since the late 1990s. These swings could have consequences for ecosystem stability and the control of pests and diseases, as well as for industries such as agriculture and solar-energy production, all of which are vulnerable to inconsistent and extreme weather, the researchers noted.

The day-to-day variations also could affect what scientists could expect to see as the Earth's climate changes, according to the researchers and other scientists familiar with the work. Constant fluctuations in severe conditions could alter how the atmosphere distributes heat and rainfall, as well as inhibit the ability of plants to remove carbon dioxide from the atmosphere, possibly leading to higher levels of the greenhouse gas than currently accounted for.

Existing climate-change models have historically been evaluated against the average weather per month, an approach that hides variability, explained lead author David Medvigy, an assistant professor in the Department of Geosciences at Princeton. To conduct their analysis, he and co-author Claudie Beaulieu, a postdoctoral research fellow in Princeton's Program in Atmospheric and Oceanic Sciences, used a recently developed computer program that has allowed climatologists to examine weather data on a daily level for the first time, Medvigy said.

"Monthly averages reflect a misty world that is a little rainy and cloudy every day. That is very different from the weather of our actual world, where some days are very sunny and dry," Medvigy said.

"Our work adds to what we know about climate change in the real world and places the whole problem of climate change in a new light," he said. "Nobody has looked for these daily changes on a global scale. We usually think of climate change as an increase in mean global temperature and potentially more extreme conditions -- there's practically no discussion of day-to-day variability."

The Princeton findings stress that analysis of erratic daily conditions such as frequent thunderstorms may in fact be crucial to truly understanding the factors shaping the climate and affecting the atmosphere, said William Rossow, a professor of earth system science and environmental engineering at the City College of New York.

"It's important to know what the daily extremes might do because we might care about that sooner," said Rossow, who also has studied weather variability. He had no role in the Princeton research but is familiar with it.

Rossow said existing climate-change models show light rain more frequently than they should and don't show extreme precipitation. "If it rains a little bit every day, the atmosphere may respond differently than if there's a really big rainstorm once every week. One of the things you find about rainstorms is that the really extreme ones are at a scale the atmosphere responds to," he said.

Although climate-change models predict future changes in weather as the planet warms, those calculations are hindered by a lack of representation of day-to-day patterns, Rossow said.

"If you don't know what role variability is playing now, you're not in a very strong position for making remarks about how it might change in the future," he said. "We're at a stage where we had better take a look at what this research is pointing out."

Medvigy and Beaulieu determined sunshine variation by analyzing fluctuations in solar radiation captured by the International Satellite Cloud Climatology Project from 1984 to 2007. To gauge precipitation, the researchers used daily rainfall data from the Global Precipitation Climatology Project spanning 1997 to 2007.

Medvigy and Beaulieu found that during those respective periods, extremes in sunshine and rainfall became more common on a day-to-day basis. In hypothetical terms, Medvigy said, these findings would mean that a region that experienced the greatest increase in sunshine variability might have had partly cloudy conditions every day in 1984, but by 2007 the days would have been either sunny or heavily cloudy with no in-between. For rainfall, the uptick in variation he and Beaulieu observed could be thought of as an area experiencing a light mist every day in 1997, but within ten years the days came to increasingly fluctuate between dryness and downpour.

The researchers observed at least some increase in variability for 35 percent of the world during the time periods analyzed. Regions such as equatorial Africa and Asia experienced the greatest increase in the frequency of extreme conditions, with erratic shifts in weather occurring throughout the year. In more temperate regions such as the United States, day-to-day variability increased to a lesser degree and typically only seasonally. In the northeastern United States, for instance, sudden jumps from sunny to bleak days became more common during the winter from 1984 to 2007.

In the 23 years that sunshine variability rose for tropical Africa and Asia, those areas also showed a greater occurrence of towering thunderstorm clouds known as convective clouds, Medvigy said. Tropical areas that experienced more and more unbalanced levels of sunshine and rainfall witnessed an in-kind jump in convective cloud cover. Although the relationship between these clouds and weather variations needs more study, Medvigy said, the findings could indicate that the sunnier days accelerate the rate at which water evaporates then condenses in the atmosphere to form rain, thus producing heavy rain more often.

Storms have lasting effect on daily weather patterns

Although the most extreme weather variations in the study were observed in the tropics, spurts of extreme weather are global in reach, Rossow said. The atmosphere, he said, is a fluid, and when severe weather such as a convective-cloud thunderstorm "punches" it, the disturbance spreads around the world. Weather that increasingly leaps from one extreme condition to another in short periods of time, as the Princeton research suggests, affects the equilibrium of heat and rain worldwide, he said.

"Storms are violent and significant events — while they are individually localized, their disturbance radiates," Rossow said.

"Wherever it's raining heavily, especially, or variably is where the atmosphere is being punched. As soon as it is punched somewhere in the tropics it starts waves that go all the way around the planet," he said. "So we can see waves coming off the west Pacific convection activity and going all the way around the planet in the tropical band. The atmosphere also has the job of moving heat from the equator to the poles, and storms are the source of heat to the atmosphere, so if a storm's location or its timing or its seasonality is altered, that's going to change how the circulation responds."

These sweeping atmospheric changes can interact with local conditions such as temperature and topography to skew regular weather patterns, Rossow said.

"Signals end up going over the whole globe, and whether they're important in a particular place or not depends on what else is happening," he said. "But you can think of storms as being the disturbances in an otherwise smooth flow. That's why this is a climate issue even though we're talking about daily variability in specific locations."

The impact of these fluctuations on natural and manmade systems could be as substantial as the fallout predicted from rises in the Earth's average temperature, Medvigy said. Inconsistent sunshine could impair the effectiveness of solar-energy production and — with fluctuating rainfall also included — harm agriculture, he said. Wetter, hotter conditions also breed disease and parasites such as mosquitoes, particularly in tropical areas, he said.

On a larger scale, wild shifts in day-to-day conditions would diminish the ability of trees and plants to remove carbon from the atmosphere, Medvigy said. In 2010, he and Harvard University researchers reported in the journal the Proceedings of the National Academy of Sciences that erratic rain and sunlight impair photosynthesis. That study concluded that this effect upsets the structure of ecosystems, as certain plants and trees — particularly broad-leafed trees more than conifers — adapt better than others.

In the context of the current study, Medvigy said, the impact of variability on photosynthesis could mean that more carbon will remain in the atmosphere than climate models currently anticipate, considering that the models factor in normal plant-based carbon absorption. Moreover, if the meteorological tumult he and Beaulieu observed is caused by greenhouse gases, these fluctuations could become self-perpetuating by increasingly trapping the gases that agitated weather patterns in the first place.

"We have not yet looked for direct ties between weather variability and increased carbon dioxide concentration in the atmosphere, but I would not be surprised if they are connected in some way," Medvigy said.

"Increases in variability diminish the efficiency with which plants and trees remove carbon dioxide from the air," he said. "All of a sudden, the land and the atmosphere are no longer in balance, and plants cannot absorb levels of carbon dioxide proportional to the concentrations in the environment. That will affect everybody."

The study was published online Oct. 14 by the Journal of Climate, and was funded by grants from the Princeton Carbon Mitigation Initiative and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>