Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental scientists estimate that China could meet its entire future energy needs by wind alone

14.09.2009
Study suggests that wind is ecologically and economically practical and could reduce CO2 emissions

A team of environmental scientists from Harvard and Tsinghua University demonstrated the enormous potential for wind-generated electricity in China.

Using extensive metrological data and incorporating the Chinese government's energy bidding and financial restrictions for delivering wind power, the researchers estimate that wind alone has the potential to meet the country's electricity demands projected for 2030.

The switch from coal and other fossil fuels to greener wind-based energy could also mitigate CO2 emissions, thereby reducing pollution. The report appeared as a cover story in the September 11th issue of Science.

"The world is struggling with the question of how do you make the switch from carbon-rich fuels to something carbon-free," said lead author Michael B. McElroy, Gilbert Butler Professor of Environmental Studies at Harvard's School of Engineering and Applied Sciences (SEAS).

China has become second only to the U.S. in its national power generating capacity— 792.5 gigawatts per year with an expected future 10 percent annual increase—and is now the world's largest CO2 emitter. Thus, added McElroy, "the real question for the globe is: What alternatives does China have?"

While wind-generated energy accounts for only 0.4 percent of China's total current electricity supply, the country is rapidly becoming the world's fastest growing market for wind power, trailing only the U.S., Germany, and Spain in terms of installed capacities of existing wind farms.

Development of renewable energy in China, especially wind, received an important boost with passage of the Renewable Energy Law in 2005; the law provides favorable tax status for alternative energy investments. The Chinese government also established a concession bidding process to guarantee a reasonable return for large wind projects.

"To determine the viability of wind-based energy for China we established a location-based economic model, incorporating the bidding process, and calculated the energy cost based on geography," said co-author Xi Lu, a graduate student in McElroy's group at SEAS. "Using the same model we also evaluated the total potentials for wind energy that could be realized at a certain cost level."

Specifically, the researchers used meteorological data from the Goddard Earth Observing Data Assimilation System (GEOS) at NASA. Further, they assumed the wind energy would be produced from a set of land-based 1.5-megawatt turbines operating over non-forested, ice-free, rural areas with a slope no more than 20 percent.

"By bringing the capabilities of atmospheric science to the study of energy we were able to view the wind resource in a total context," explained co-author Chris P. Nielsen, Executive Director of the Harvard China Project, based at SEAS.

The analysis indicated that a network of wind turbines operating at as little as 20 percent of their rated capacity could provide potentially as much as 24.7 petawatt-hours of electricity annually, or more than seven times China's current consumption. The researchers also determined that wind energy alone, at around 7.6 U.S. Cents per kilowatt-hour, could accommodate the country's entire demand for electricity projected for 2030.

"Wind farms would only need to take up land areas of 0.5 million square kilometers, or regions about three quarters of the size of Texas. The physical footprints of wind turbines would be even smaller, allowing the areas to remain agricultural," said Lu.

By contrast, to meet the increased demand for electricity during the next 20 years using fossil fuel-based energy sources, China would have to construct coal-fired power plants that could produce the equivalent of 800 gigawatts of electricity, resulting in a potential increase of 3.5 gigatons of CO2 per year. The use of cleaner wind energy could both meet future demands and, even if only used to supplement existing energy sources, significantly reduce carbon emissions.

Moving to a low-carbon energy future would require China to make an investment of around $900 billion dollars (at current prices) over the same twenty-year period. The scientists consider this a large but not unreasonable investment given the present size of the Chinese economy. Moreover, whatever the energy source, the country will need to build and support an expanded energy grid to accommodate the anticipated growth in power demand.

"We are trying to cut into the current defined demand for new electricity generation in China, which is roughly a gigawatt a week—or an enormous 50 gigawatts per year," said McElroy. "China is bringing on several coal fire power plants a week. By publicizing the opportunity for a different way to go we will hope to have a positive influence."

In the coming months, the researchers plan to conduct a more intensive wind study in China, taking advantage of 25-year data with significantly higher spatial resolution for north Asian regions to investigate the geographical year-to-year variations of wind. The model used for assessing China could also be applied for assessing wind potential anywhere in the world, onshore and offshore, and could be extended to solar generated electricity.

Yuxuan Wang, Associate Professor in the Department of Environmental Science and Engineering at Tsinghua University, Beijing, China, also contributed to the study. The team's research was supported by a grant from the National Science Foundation (NSF).

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>