Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Entropy alone creates complex crystals from simple shapes

In a study that elevates the role of entropy in creating order, research led by the University of Michigan shows that certain pyramid shapes can spontaneously organize into complex quasicrystals.

A quasicrystal is a solid whose components exhibit long-range order, but without a single pattern or a unit cell that repeats.

A paper on the findings appears in the Dec. 10 issue of Nature. Researchers from Case Western Reserve University and Kent State University collaborated on the study.

Entropy is a measure of the number of ways the components of a system can be arranged. While often linked to disorder, entropy can also cause objects to order. The pyramid shape central to this research is the tetrahedron---a three-dimensional, four-faced, triangular polyhedron that turns up in nanotechnology and biology.

"Tetrahedrons are the simplest regular solids, while quasicrystals are among the most complex and beautiful structures in nature. It's astonishing and totally unexpected that entropy alone can produce this level of complexity," said Sharon Glotzer, a professor in the University of Michigan departments of Chemical Engineering and Materials Science and Engineering and principal investigator on the project.

The finding may lead to the development of a variety of new materials that derive properties from their structure, said Rolfe Petschek, a physics professor at Case Western Reserve who helped with the mathematical characterization of the structure. "A quasicrystal will have different properties than a crystal or ordinary solid," Petschek said.

The scientists used computer simulation to find the arrangement of tetrahedrons that would yield the densest packing---that would fit the most tetrahedrons in a box.

The tetrahedron was for decades conjectured to be the only solid that packs less densely than spheres, until just last year when U-M mathematics graduate student Elizabeth Chen found an arrangement that proved that speculation wrong. This latest study bests Chen's organization and discovered what is believed to be the densest achievable packing of tetrahedrons.

But Glotzer says the more significant finding is that the tetrahedrons can unexpectedly organize into intricate quasicrystals at a point in the computer simulation when they take up roughly half the space in the theoretical box.

In this computer experiment, many thousands of tetrahedrons organized into dodecagonal, or 12-fold, quasicrystals made of parallel stacks of rings around pentagonal dipyramids. A pentagonal dipyramid contains five tetrahedrons arranged into a disk. The researchers discovered that this motif plays a key role in the overall packing.

This is the first result showing such a complicated self-arrangement of hard particles without help from attractive interactions such as chemical bonds, Glotzer said.

"Our results go to the very heart of phase transitions and to the question of how complex order arises in nature and in the materials we make," Glotzer said. "We knew that entropy on its own could produce order, but we didn't expect it to produce such intricate order. What else might be possible just due to entropy?"

Other approaches to solving the tetrahedron packing problem have not involved computer simulations. Researchers instead tried out different arrangements to arrive at the densest structure. That was the approach taken by Chen, who achieved a packing fraction of more than 77 percent, which means the shapes took up more than 77 percent of the space in the box. (Cubes have a 100 percent packing fraction in a cubic box, while spheres pack at only 74 percent.)

Rather than "posit what they might do," this computer simulation allowed the tetrahedrons to figure out the best packing on their own according to the laws of statistical mechanics and thermodynamics, said Michael Engel, a postdoctoral researcher at U-M and co-first author of the paper with U-M chemical engineering graduate student Amir Haji-Akbari.

In the simulation, the tetrahedrons organized into a quasicrystal and settled on a packing that, when compressed further, used up 83 percent of the space. Engel then reorganized the shapes into a "quasicrystalline approximate," which is a periodic crystal closely resembling the quasicrystal. He found an arrangement that filled more than 85 percent of the space.

The researchers are excited about the possible applications of the new structure.

"Made of the right materials, this unexpected new tetrahedron quasicrystal may possess unique optical properties that could be very interesting and useful," said Peter Palffy-Muhoray, a professor in the Liquid Crystal Institute at Kent State University and a collaborator on the work. Possible uses include communication and stealth technologies.

The paper is called "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra." The research is funded by the Air Force Office of Scientific Research and the National Science Foundation.

For more information:

Sharon Glotzer:

Michigan Engineering:

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>