Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Motion Perception in Autism May Point to an Underlying Cause of the Disorder

10.05.2013
Children with autism see simple movement twice as quickly as other children their age, and this hypersensitivity to motion may provide clues to a fundamental cause of the developmental disorder, according to a new study.

Such heightened sensory perception in autism may help explain why some people with the disorder are painfully sensitive to noise and bright lights. It also may be linked to some of the complex social and behavioral deficits associated with autism, says Duje Tadin, one of the lead authors on the study and an assistant professor of brain and cognitive sciences at the University of Rochester.

“We think of autism as a social disorder because children with this condition often struggle with social interactions, but what we sometimes neglect is that almost everything we know about the world comes from our senses. Abnormalities in how a person sees or hears can have a profound effect on social communication,” says Tadin.

Although previous studies have found that people with autism possess enhanced visual abilities with static images, this is the first research to discover a heightened perception of motion, the authors write. The findings were reported in the Journal of Neuroscience on May 8 by Tadin, co-lead author Jennifer Foss-Feig, a postdoctoral fellow at the Child Study Center at Yale University, and colleagues at Vanderbilt University.

In the study, 20 children with autism and 26 typically developing children, ages 8 to 17, looked at brief video clips of moving black and white bars and simply indicated which direction the bars were heading, right or left. Each time a participant made the correct direction choice, the next video clip became slightly shorter and thus a little more difficult. When they made a mistake, the next video became a bit longer and thus easier to see. In this way, the researchers were able to measure how quickly children with autism can perceive motion.

The researchers found that when the bars in the image were just barely visible, both groups of children performed identically. When the contrast or darkness of the bars was increased all participants in the study got better at perceiving the direction of movement. “But kids with autism, got much, much better—performing twice as well as their peers,” says Foss-Feig. In fact, the worst performing participant with autism was roughly equal to the average of the participants without autism.

“This dramatically enhanced ability to perceive motion is a hint that the brains of individuals with autism keep responding more and more as intensity increases. Although this could be considered advantageous, in most circumstances if the neural response doesn’t stop at the right level it could lead to sensory overload,” explains Foss-Feig.

Such hypersensitive perception is the neural signature for a brain that is unable to dampen its response to sensory information, note the authors. This same increase in neural “excitability” is also found in epilepsy, which is strongly linked to autism. In fact, as many as one third of individuals with autism also have epilepsy. Normally, the brain puts the brakes on its responses to sound, taste, touch, and other stimuli when they become too intense.

What’s important about this dampening ability is that it’s a ubiquitous mechanism controlling how humans perceive the world. “If the processing of our vision, hearing, and other sensory systems is abnormal in some way, it will have a cascading effect on other brain functions,” says Carissa Cascio, assistant professor of psychiatry at Vanderbilt University, in whose lab the study was conducted. “You may be able to see better, but at some point the brain really is over responding. A strong response to high intensity stimuli in autism could be one reason for withdrawal.”

The research builds on earlier findings that people with autism process visual stimuli differently. For example, previous studies have shown that individuals with autism are better able to perceive basic patterns, are able to see simple line images more quickly, and are more focused on details than individuals without the condition. By contrast, in more complex tasks, like facial recognition, these enhancements become impairments. Likewise, autism is associated with deficits in perceiving motion patterns more complex than the simple moving bars used in this study, such as detecting walking and other biological movements.

Kimberly Schauder, a research assistant at Vanderbilt University, is also an author on the paper. The research was supported by grants from the National Institutes of Health.

Susan Hagen | Newswise
Further information:
http://www.rochester.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>