Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can engineered bugs help generate biofuels? Study holds promise

Concordia research published in the journal Microbial Cell Factories

The versatile organism Lactococcus lactis, the workhorse bacterium that helps turn milk into cheese, may also be valuable in the understanding of how microbes turn the organic compound cellulose into biofuels.

New research from Concordia University, published in the journal Microbial Cell Factories, suggests the bacterium can be engineered to transform plant material into biofuels or other chemicals.

Concordia biology professor Vincent Martin and his PhD student Andrew Wieczorek demonstrated how structural or scaffolding proteins on the surface of the bacteria can be engineered in Lactococcus lactis towards the breakdown of plant material.

They showed how these scaffold proteins were successful in providing a stable surface outside the cell for chemical activity, e.g. the transformation of plant material into biofuels.

"This is the first study to show how the scaffolding proteins, can be secreted and localized to the cell surface of Lactococcus," says Dr. Martin, who is also Canada Research Chair in Microbial Genomics and Engineering.

"Exporting these proteins and localizing them to the outside of the cell is a huge milestone. This can enhance the efficiency of any bioprocesses or the breakdown of organic materials."

What's promising about this research, stresses Professor Martin, is how the scaffolding proteins of Lactococcus lactis appear to bond with multiple compounds. "Our next step will be to engineer larger more complex scaffolds that can encourage other bio-processes that can eventually enhance the yield of fuels in a manner that is commercially viable."

Partners in research:

This study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

About the study:

"Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis," published in Microbial Cell Factories, was authored by Andrew S. Wieczorek and Vincent JJ Martin of Concordia University.

Related links:

Cited Microbial Cell Factories study:
Concordia University:
Concordia Department of Biology:
Media contact:
Sylvain-Jacques Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068

Sylvain-Jacques Desjardins | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>