Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in energy R&D needed to combat climate change

26.10.2010
A new assessment of future scenarios that limit the extent of global warming cautions that unless current imbalances in R&D portfolios for the development of new, efficient, and clean energy technologies are redressed, greenhouse gas (GHG) emission reduction targets are unlikely to be met, or met only at considerable costs.

The study identifies energy efficiency as the single most important option for achieving significant and long-term reductions in GHG emissions, accounting for up to 50 percent of the reduction potential across the wide range of scenarios analyzed.

However, investment in energy efficiency R&D has typically been less than 10 percent of the overall public sector R&D budget in the countries of the International Energy Agency (IEA). Conversely, although nuclear energy accounts for less than 10 percent of the GHG emission reduction potentials across all scenarios, it has received some 50 percent of the total public investment in energy technology R&D.

The analysis, conducted by Drs' Arnulf Grubler and Keywan Riahi from the International Institute for Applied Systems Analysis (IIASA), Austria, and published in the inaugural issue of the journal Carbon Management (2010 1(1):79-87), compared historical and current government spending on R&D by the 28 member countries of the International Energy Agency, with a "needs"-based analysis of the technologies required to achieve long-term climate stabilization. The assessment is based on the analysis of a wide range of scenarios of future technology deployment rates under a range of future uncertainties and climate constraints.

"Current investments in energy technology R&D by the public sector, in all industrialized countries, are heavily biased in favor of nuclear energy, to the detriment of energy efficiency research," says IIASA energy expert, Dr Keywan Riahi. "Given their respective importance for future climate mitigation this is a significant imbalance. Based on current investments, we estimate that a five-fold increase in investment in energy efficiency is needed to address this imbalance. Importantly, if the current rate and allocation of investment in energy R&D is maintained there is a high chance that technology development will be insufficient to meet stringent GHG reduction targets."

While technological development is critical the authors also emphasize the need for accompanying market deployment incentives for an aligned and consistent technology policy framework.

"The drastic emission cuts required to limit climate change will only be possible if we can achieve a major a transformation of the energy system," adds IIASA co-author Arnulf Grubler. "This will require the adoption of a range of policies and measures beyond an expanded and restructured energy technology R&D portfolio to include incentives for niche market applications and the large-scale deployment of climate-friendly technologies."

Because the future is inherently uncertain, the study uses a range of scenarios -22 in total - to examine what successful, or unsuccessful adoption of different technologies (such as nuclear or carbon capture and sequestration) might achieve for reducing GHG emissions. The scenarios include a "do nothing" or business-as-usual scenario, where, for example, R&D policies remain uncoordinated and market incentives for new technologies to minimize emissions remain unchanged. The study concludes that a business-as-usual approach to energy technology R&D will make combating climate change very difficult and more costly, reducing both the likelihood of success and the political and social acceptability of a transition to climate-friendly, energy-efficient technologies.

Based on the scenarios the authors outline a forward looking energy R&D 'portfolio' that they propose would provide the best hedging strategy for making sure future GHG emissions can be actually reduced and at reasonable costs. In order to achieve this goal currently unbalanced energy technology R&D portfolios need to change, reflecting the respective "option value" for future GHG mitigation of different options, which are particularly large for energy efficiency (Figure 1).

The study focused primarily on public or government-funded, R&D but the authors say the findings in terms of energy technology investment is similar to that of private sector investment, where there is a similar preference for large-scale supply-side energy technology investments, to the detriment of energy efficiency.

For more information or interviews contact:

Keywan Riahi: IIASA, Austria
Tel: +43 (0) 2236 807 491
E-mail: riahi@iiasa.ac.at
Arnulf Grubler: IIASA, Austria
Tel: +43 (0) 2236 807 470
E-mail: gruebler@iiasa.ac.at
or arnulf.grubler@yale.edu
Leane Regan: IIASA, Austria
Tel: +43 (0) 2236 807 316, Mob: +43 664 443 0368
E-mail: regan@iiasa.ac.at

Leane Regan | EurekAlert!
Further information:
http://www.iiasa.ac.at

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>