Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy drinks work -- in mysterious ways!

16.04.2009
Runners clutching bottles of energy drink are a common sight, and it has long been known that sugary drinks and sweets can significantly improve athletes' performance in endurance events. The question is how?

Clearly, 'sports' drinks and tablets contain calories. But this alone is not enough to explain the boost, and the benefits are felt even if the drink is spat out rather than swallowed. Nor does the sugary taste solve the riddle, as artificial sweeteners do not boost performance even when they are indistinguishable from real sugars.

Writing in the latest issue of The Journal of Physiology, Ed Chambers and colleagues not only show that sugary drinks can significantly boost performance in an endurance event without being ingested, but so can a tasteless carbohydrate – and they do so in unexpected ways.

The researchers prepared drinks that contained either glucose (a sugar), maltodextrin (a tasteless carbohydrate) or neither, then carefully laced them with artificial sweeteners until they tasted identical. They asked endurance-trained athletes to complete a challenging time-trial, during which they rinsed their mouths with one of the three concoctions.

The results were striking. Athletes given the glucose or maltodextrin drinks outperformed those on 'disguised' water by 2 - 3% and sustained a higher average power output and pulse rate, even though didn't feel they were working any harder. The authors conclude that as-yet unidentified receptors in the mouth independent from the usual 'sweet' taste buds must be responsible. "Much of the benefit from carbohydrate in sports drinks is provided by signalling directly from mouth to brain rather than providing energy for the working muscles," explained Dr Chambers.

The team then used a neuro-imaging technique known as fMRI to monitor the athletes' brain activity shortly after giving them one of the three compounds. They found that both glucose and maltodextrin triggered specific areas of the brain associated with reward or pleasure, while the artificial sweetener did not. This acts to reduce the athletes' perception of their workload, suggest the authors, and hence enables them to sustain a higher average output.

Their findings support the emerging 'central governor hypothesis' – the theory that it is not the muscles, heart or lungs that ultimately limit performance, but the brain itself, based on the information it receives from the body. Stimulating the brain in certain ways – such as swilling sugary drinks – can boost output, perhaps giving athletes that all-important edge over their rivals.

Melanie Thomson | EurekAlert!
Further information:
http://ww.wiley.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>