Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotion detectors could make driving safer

14.03.2014

EPFL scientists are studying how to identify drivers' emotions using embedded cameras that film their faces

Technology now allows us to read facial expressions and identify which of the seven universal emotions a person is feeling: fear, anger, joy, sadness, disgust, surprise, or suspicion. This is very useful in video game development, medicine, marketing, and, perhaps less obviously, in driver safety. We know that in addition to fatigue, the emotional state of the driver is a risk factor.


The device detects anger on the driver's face.

Credit: EPFL-LTS5 & PSA

Irritation, in particular, can make drivers more aggressive and less attentive. EPFL researchers, in collaboration with PSA Peugeot Citroën, have developed an on-board emotion detector based on the analysis of facial expressions. Tests carried out using a prototype indicate that the idea could have promising applications.

It's not easy to measure emotions within the confines of a car, especially non-invasively. The solution explored by scientists in EPFL's Signal Processing 5 Laboratory (LTS5), who specialize in facial detection, monitoring and analysis, is to get drivers' faces to do the job. In collaboration with PSA Peugeot Citroën, LTS5 adapted a facial detection device for use in a car, using an infrared camera placed behind the steering wheel.

The problem was to get the device to recognize irritation on the face of a driver. Everyone expresses this state somewhat differently – a kick, an epithet, a nervous tic or an impassive face. To simplify the task at this stage of the project, Hua Gao and Anil Yüce, who spearheaded the research, chose to track only two expressions: anger and disgust, whose manifestations are similar to those of anger.

Two phases of tests were carried out. First, the system "learned" to identify the two emotions using a series of photos of subjects expressing them. Then the same exercise was carried out using videos. The images were taken both in an office setting as well as in real life situations, in a car that was made available for the project.

The rapidity with which the comparison between filmed images and thus detection could be carried out depended on the analysis methods used. But overall, the system worked well and irritation could be accurately detected in the majority of cases. When the test failed, it was usually because this state is very variable from individual to individual. This is where the difficulty will always lie, given the diversity of how we express anger. Additional research aims to explore updating the system in real-time – to complement the static database – a self-taught human-machine interface, or a more advanced facial monitoring algorithm, says Hua Gao.

Detecting emotions is only one indicator for improving driver safety and comfort. In this project, it was coupled with a fatigue detector that measures the percentage of eyelid closure. The LTS5 is also working on detecting other states on drivers' faces such as distraction, and on lip reading for use in vocal recognition. These projects are coordinated by EPFL's Transportation Center and carried out in collaboration with PSA Peugeot Citroën.

Jean-Philippe Thiran | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: Emotion PSA Polytechnique detector detectors disgust distraction emotions exercise safer

More articles from Studies and Analyses:

nachricht New study: How stable is the West Antarctic Ice Sheet?
09.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Online shopping might not be as green as we thought
08.02.2016 | University of Delaware

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>