Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elevated zinc concentrations in Colorado waterway likely a result of climate change

16.12.2010
Rising concentrations of zinc in a waterway on Colorado's Western Slope may be the result of climate change that is affecting the timing of annual snowmelt, says a new study led by the University of Colorado at Boulder.

The study focused on the Snake River watershed just west of the Continental Divide near Keystone, Colo., where CU-Boulder researchers have observed a four-fold increase in dissolved zinc over the last 30 years during the lowest water flow months, said Caitlin Crouch. Crouch, a master's degree student who led the study, said the high levels of zinc affect stream ecology, including deleterious effects on microbes, algae, invertebrates and fish.

The team speculated the increased zinc concentrations may be tied to changes in groundwater conditions and stream flow patterns caused by climate change and the associated snowmelt that has been peaking two to three weeks earlier than normal in recent years, largely because of warming air temperatures. The result is lowered stream flows and drier soils along the stream in September and October, which increases metal concentrations, said Crouch.

"While most of the talk about climate change in western waterways is about decreasing water quantities, we are evaluating potential climate influences on water quality, which is a whole different ball game," she said.

Crouch gave a presentation on the subject at the fall meeting of the American Geophysical Union held in San Francisco Dec. 13-17. The study was co-authored by Professor Diane McKnight of CU-Boulder's civil and environmental engineering department.

The zinc in the Snake River watershed is primarily a result of acid rock drainage, or ARD, which can come from abandoned mine sites along rivers or through the natural weathering of pyrite in the local rock, said Crouch. Sometimes enhanced by mining activity, weathering pyrite forms sulfuric acid through a series of chemical reactions, which dissolves metals like zinc and carries them into the groundwater.

McKnight, also a fellow of CU-Boulder's Institute of Arctic and Alpine Research, said there are nearly 2,000 miles of waterways in Colorado affected by ARD.

One of the most noticeable impacts of ARD in the Upper Snake River drainage is on the fishery downstream, said Crouch, a graduate student in CU-Boulder's Environmental Studies Program. Rainbow trout populations in much of the river are not self-sustaining because of ecologically harsh stream conditions, and the waterway requires stocking several times a year.

The elevated zinc in the Snake River comes from several ARD sources, said Crouch. Crouch's study site -- where an increasing trend in zinc concentrations is sustained by groundwater discharge -- is above the Peru Creek tributary to the Snake River, where natural pyrite weathering is thought to be the main source of ARD. Peru Creek is largely devoid of life due to ARD from the abandoned Pennsylvania Mine and other smaller mines upstream and has been a target for potential remediation efforts.

McKnight said another factor involved in rising zinc levels in the Snake River watershed -- which runs from the top of the Continental Divide to Dillon Reservoir -- could be the result of the severe 2002 drought in Colorado. The drought significantly lowered waterways, allowing more pyrite to be weathered in dry soils of the watershed and in wetlands adjacent to the stream.

As part of her study, Crouch measured zinc concentrations in an alpine tributary of the Upper Snake River. She found that zinc concentrations there were 10 times higher than in the main stem of the waterway and correlated with increased sulfate, so-called "hard water" containing calcium and magnesium, and a variety of metals.

"This supports our contention that the increasing zinc concentrations we are seeing in the watershed are driven by the acceleration of ARD," Crouch said. "One of the things I still am trying to parse out is whether metals like zinc are coming from one discrete source or are being diffused into the watershed from the groundwater beneath."

Cleaning up abandoned, polluted mines like the Pennsylvania Mine remains a problem largely because of liability issues since the mine owners who normally would be responsible for the mine cleanup are long gone. The Environmental Protection Agency has begun an agency-wide effort to reduce barriers to the cleanup of abandoned mine sites by local environmental groups and volunteers.

In the case of the Pennsylvania Mine, the Snake River Task Force is working with partners like the Keystone Ski Resort, the Keystone Center, Trout Unlimited, the Northwest Colorado Council of Governments, Summit County, the Colorado Department of Public Health and Environment, the EPA and the Blue River Watershed Group.

Seven CU-Boulder graduate students have produced master's and doctoral theses under McKnight on environmental issues related to the Snake River watershed. Copies of the studies have been provided to the Snake River Task Force to help assess the current and future stream chemistry and biology in the area.

Caitlin Crouch | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>