Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic cigarettes require more suction than conventional brands

29.07.2010
UC Riverside researchers find e-cigarette aerosol decreases over time in smoke-out interval, requiring stronger puffs

Stronger suction is required to smoke "electronic cigarettes" – marketed as tobacco-free nicotine delivery systems – than conventional brands, with possible adverse effects on human health, researchers at the University of California, Riverside report.

The researchers used a smoking machine to compare the smoking properties of eight conventional cigarettes with five e-cigarette brands. They examined the vacuum required to produce smoke (in the case of conventional cigarettes) or aerosol (in the case of e-cigarettes), and compared the density of the smoke/aerosol over time.

The researchers found that except for one brand (Liberty Stix), higher vacuums were required to smoke e-cigarettes than conventional brands.

The researchers also found that in the case of e-cigarettes, the aerosol density dropped after the first ten puffs, requiring still stronger suction thereafter to produce aerosol.

Study results appeared last week in Nicotine and Tobacco Research.

"It is too early to know exactly what effect stronger inhaling and diminishing amounts of aerosol will have on human health, but these factors are likely to lead to compensatory smoking, as has been seen previously with 'light' tobacco cigarettes," said Prue Talbot, a professor of cell biology and the senior author of the research paper.

Talbot's research team examined the following conventional cigarettes: Merit Ultra Lights, Marlboro Ultra Lights, Marlboro Lights, Marlboro Reds, Camel unfiltered, Camel Lights, Camel filtered, and Pall Mall unfiltered cigarettes. In the case of e-cigarettes, the researchers tested the following kits: Liberty Stix, Crown Seven's Hydro Kit, NJOY, Smoking Everywhere's Gold Kit, and a VapCigs starter kit.

"Our work shows that aerosol density decreases as e-cigarettes are used, requiring stronger puffs over time to sustain density," Talbot said. "Manufacturers often claim that e-cigarettes cartridges are equivalent to a certain number of conventional cigarettes. However, this information seems misleading."

Talbot's lab found that while the first ten puffs of an e-cigarette are similar to a conventional cigarette, later puffs were highly variable in aerosol density and do not duplicate smoking of conventional brands. The researchers found that even though one e-cigarette cartridge may smoke for 200 puffs, cartridges do not smoke uniformly for those 200 puffs and therefore do not duplicate nicotine delivery of individual conventional cigarettes.

"Our results show that e-cigarettes smoke very differently than conventional brands," Talbot said. "In preliminary trials, we observed that some brands of e-cigarettes were difficult to smoke possibly because they have relatively small air intake holes. Moreover, the interior of e-cigarettes is dense compared to the relatively porous tobacco-containing cigarettes."

Talbot, who is also the director of the UCR Stem Cell Center, was joined in the research by Anna Trtchounian, the first author of the paper, and Monique Williams of UC Riverside.

The study was supported by the University of California Tobacco-Related Disease Research Program; the University of California Academic Senate; and the Hispanic Serving Institutions-California Cost Reduction and Access Act Science, Technology, Engineering, and Mathematics Pathway Project.

"This paper is the first detailed study showing that greater inhalation pressure is required to smoke e-cigarettes as compared to conventional cigarettes," said Kamlesh Asotra, a research administrator at the University of California Tobacco-Related Disease Research Program. "An important implication is that users must exert greater inhalation pressure and, therefore, it may predictably cause the aerosol to reach deeper tissue in the user's lungs. As in the case of conventional harm reduction cigarettes with lower nicotine content, users of e-cigarettes may also need to smoke greater number of puffs to receive sufficient amount of nicotine to satisfy their craving.

"Based on the results of this paper, not only do users become more aware of the vapor characteristics and smoking properties of e-cigarettes but also manufacturers of e-cigarettes will take notice of the functional inconsistencies of their products," he said.

About electronic cigarettes:

E-cigarettes are marketed as a relatively new type of tobacco-free nicotine delivery device, consisting of a battery, a charger, a power cord, an atomizer, and a cartridge containing nicotine and propylene glycol.

When a smoker draws air through an e-cigarette, an airflow sensor activates the battery that turns the tip of the cigarette red to simulate smoking and heats the atomizer to vaporize the propylene glycol and nicotine. Upon inhalation, the aerosol vapor delivers a dose of nicotine into the lungs of the smoker, after which, residual aerosol is exhaled into the environment.

While produced mainly in China, e-cigarette use has rapidly proliferated worldwide. E-cigarettes do not burn tobacco and therefore do not deliver the numerous chemicals and toxicants found in conventional cigarette smoke.

To date, little has been published in the scientific literature about the health benefits and risks of e-cigarettes.

About the smoking machine:

The smoking machine consists of a puffer box connected via tubing to a peristaltic pump. The line between the puffer box and the pump contain two untapered T connectors. The connector closest to the puffer box holds the conventional or electronic cigarette. The second connector is attached to an upright U-shaped water manometer built at UC Riverside. The manometer measures the vacuum in the line drawing a puff from each cigarette.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>