Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical Transmission at the Atomic Level

01.04.2014

Heidelberg physicists develop new approach to building signal processing components from individual atoms

In a study on the transport of atoms in ultracold gases, a team of physicists led by Dr. Sandro Wimberger has developed a new approach to how signals might be transmitted at the atomic level.

This could be especially important for realising logic structures with strictly defined functions on the basis of individual atoms, which in turn could find application in transistors or diodes. The research work in the innovative field of atomtronics is being done at the Institute for Theoretical Physics at Heidelberg University.

The researchers are attempting to gain a fundamental understanding of quantum mechanical effects as compared to conventional electronics.

New experimental techniques allow targeted control of ultracold atomic gases – and ergo the bottom-up creation and study of logical components. Dr. Wimberger’s working group is studying the transport of individual atoms through a chain of so-called potential wells. “At an entirely different order of magnitude, imagine an empty egg carton in which the eggs ‘wander’ from one dimple to the next across the entire carton,” explains the Heidelberg physicist.

In these experiments, the atoms behave coherently, meaning they follow the same fixed rule during dynamic transport. In this instance, their behaviour is completely quantum mechanical over the entire chain of potential wells. Dr. Wimberger adds that at the same time, however, different atoms interact with one another, which can affect transport from one well to the next.

The principle is similar to the flow of electrons in a solid state body to which electrical voltage is applied. In this case, the Heidelberg scientists are working with bosonic atoms from a large particle reservoir coupled to a lattice of potential wells. Via the lattice chain, individual bosons flow from the larger into a smaller particle reservoir, generating a particle current in the process.

“The atomic current depends on the properties of the particle reservoir, but especially on the interactions between the atoms,” states Anton Ivanov, the study’s lead author and formerly a member of Dr. Wimberger’s working group. If the interaction is weak, the atomic current flow is directly proportional to the difference in the number of particles between the two reservoirs.

Therefore, it increases linearly with the difference in the number of particles – which is analogous to the voltage in an electrical circuit. If their interaction is strong, the atoms intersperse and block the flow of electricity until it comes to a complete halt.

In their study, the Heidelberg researchers used an analytic approach that was largely confirmed through numerical calculations. The results of their research were published in the “European Physical Journal”.

Original publication:
A. Ivanov, G. Kordas, A. Komnik, S. Wimberger: Bosonic transport through a chain of quantum dots, European Physical Journal B (5 August 2013), doi: 10.1140/epjb/e2013-40417-4

Contact:
Dr. Sandro Wimberger
Institute for Theoretical Physics
phone: +49 6221 54-5038
s.wimberger@itp.uni-heidelberg.de

Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Atomic Contact Electrical Physical Transmission conventional diodes gases lattice voltage

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>