Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical Transmission at the Atomic Level

01.04.2014

Heidelberg physicists develop new approach to building signal processing components from individual atoms

In a study on the transport of atoms in ultracold gases, a team of physicists led by Dr. Sandro Wimberger has developed a new approach to how signals might be transmitted at the atomic level.

This could be especially important for realising logic structures with strictly defined functions on the basis of individual atoms, which in turn could find application in transistors or diodes. The research work in the innovative field of atomtronics is being done at the Institute for Theoretical Physics at Heidelberg University.

The researchers are attempting to gain a fundamental understanding of quantum mechanical effects as compared to conventional electronics.

New experimental techniques allow targeted control of ultracold atomic gases – and ergo the bottom-up creation and study of logical components. Dr. Wimberger’s working group is studying the transport of individual atoms through a chain of so-called potential wells. “At an entirely different order of magnitude, imagine an empty egg carton in which the eggs ‘wander’ from one dimple to the next across the entire carton,” explains the Heidelberg physicist.

In these experiments, the atoms behave coherently, meaning they follow the same fixed rule during dynamic transport. In this instance, their behaviour is completely quantum mechanical over the entire chain of potential wells. Dr. Wimberger adds that at the same time, however, different atoms interact with one another, which can affect transport from one well to the next.

The principle is similar to the flow of electrons in a solid state body to which electrical voltage is applied. In this case, the Heidelberg scientists are working with bosonic atoms from a large particle reservoir coupled to a lattice of potential wells. Via the lattice chain, individual bosons flow from the larger into a smaller particle reservoir, generating a particle current in the process.

“The atomic current depends on the properties of the particle reservoir, but especially on the interactions between the atoms,” states Anton Ivanov, the study’s lead author and formerly a member of Dr. Wimberger’s working group. If the interaction is weak, the atomic current flow is directly proportional to the difference in the number of particles between the two reservoirs.

Therefore, it increases linearly with the difference in the number of particles – which is analogous to the voltage in an electrical circuit. If their interaction is strong, the atoms intersperse and block the flow of electricity until it comes to a complete halt.

In their study, the Heidelberg researchers used an analytic approach that was largely confirmed through numerical calculations. The results of their research were published in the “European Physical Journal”.

Original publication:
A. Ivanov, G. Kordas, A. Komnik, S. Wimberger: Bosonic transport through a chain of quantum dots, European Physical Journal B (5 August 2013), doi: 10.1140/epjb/e2013-40417-4

Contact:
Dr. Sandro Wimberger
Institute for Theoretical Physics
phone: +49 6221 54-5038
s.wimberger@itp.uni-heidelberg.de

Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Atomic Contact Electrical Physical Transmission conventional diodes gases lattice voltage

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>