Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Elastography reduces unnecessary breast biopsies

Elastography is an effective, convenient technique that, when added to breast ultrasound, helps distinguish cancerous breast lesions from benign results, according to an ongoing study presented today at the annual meeting of the Radiological Society of North America (RSNA).

When mammography yields suspicious findings, physicians often use ultrasound to obtain additional information. However, ultrasound has the potential to result in more biopsies because of its relatively low specificity, or inability to accurately distinguish cancerous lesions from benign ones. Approximately 80 percent of breast lesions biopsied turn out to be benign, according to the American Cancer Society.

"There's a lot of room to improve specificity with ultrasound, and elastography can help us do that," said the study's lead author, Stamatia V. Destounis, M.D., a diagnostic radiologist at Elizabeth Wende Breast Care, a large, community-based breast imaging center in Rochester, N.Y. "It's an easy way to eliminate needle biopsy for something that's probably benign."

Elastography improves ultrasound's specificity by utilizing conventional ultrasound imaging to measure the compressibility and mechanical properties of a lesion. Since cancerous tumors tend to be stiffer than surrounding healthy tissue or cysts, a more compressible lesion on elastography is less likely to be malignant.

"You can perform elastography at the same time as handheld ultrasound and view the images on a split screen, with the two-dimensional ultrasound image on the left and the elastography image on the right," Dr. Destounis said.

As part of the ongoing study, 179 patients underwent breast ultrasound and elastography. The research team obtained 184 elastograms and performed biopsies on all solid lesions. Of 134 biopsies, 56 revealed cancer. Elastography properly identified 98 percent of lesions that had malignant findings on biopsy, and 82 percent of lesions that turned out to be benign. Elastography was also more accurate than ultrasound in gauging the size of the lesions.

"Ultrasound can underestimate the true size of lesions, as it only sees the actual mass and not the surrounding changes the mass may cause," Dr. Destounis said.

In 2009, there will be an estimated 192,370 new cases of invasive breast cancer among women in the United States, according to the American Cancer Society, along with about 62,280 new cases of ductal carcinoma in situ, a noninvasive, early form of breast cancer.

Coauthors are Andrea L. Arieno, B.S., Melissa N. Skolny, M.S., Renee Morgan, R.T., Patricia Somerville, M.D., and Philip F. Murphy, M.D.

Also at RSNA 2009, Dr. Smitha Putturaya, M.D., F.R.C.R., presented findings from an ongoing, seven-year study on breast elastography conducted at the Charing Cross Hospital Breast Unit in London, U.K. Dr. Putturaya and colleagues found that using elastography as an adjunct to routine breast ultrasound safely decreases the number of biopsies of benign lesions and offers the potential to map tumors more precisely.

Linda Brooks | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>