Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ego City: Cities Organized Like Human Brains

07.09.2009
Cities are organized like brains, and the evolution of cities mirrors the evolution of human and animal brains, according to a new study by researchers at Rensselaer Polytechnic Institute.

Just as advanced mammalian brains require a robust neural network to achieve richer and more complex thought, large cities require advanced highways and transportation systems to allow larger and more productive populations. The new study unearthed a striking similarity in how larger brains and cities deal with the difficult problem of maintaining sufficient interconnectedness.

“Natural selection has passively guided the evolution of mammalian brains throughout time, just as politicians and entrepreneurs have indirectly shaped the organization of cities large and small,” said Mark Changizi, a neurobiology expert and assistant professor in the Department of Cognitive Science at Rensselaer, who led the study. “It seems both of these invisible hands have arrived at a similar conclusion: brains and cities, as they grow larger, have to be similarly densely interconnected to function optimally.”

As brains grow more complex from one species to the next, they change in structure and organization in order to achieve the right level of interconnectedness. One couldn’t simply grow a double-sized dog brain, for example, and expect it to have the same capabilities as a human brain. This is because, among other things, a human brain doesn’t merely have more “dog neurons,” but, instead, has neurons with a greater number of synapses than that of a dog – something crucial in helping to keep the human brain well connected.

As with brains, interconnectedness is also a critical component of the overall function of cities, Changizi said. One couldn’t put together three copies of Seattle (surface area of 83.9 sq. miles) and expect the result to have the same interconnectedness and efficiency as Chicago (surface area of 227.1 sq. miles). There would be too many highways with too few exits and lanes that are too narrow.

In exploring this topic, Changizi discovered evidence linking the size of a city or a brain to the number and size of its supporting infrastructure. He investigated and documented how the infrastructures scale up as the surface area of brains and cities increase.

As cities and the neocortex grow in surface area, the number of connectors – highways in cities and pyramidal neurons in brains – increases more slowly, as surface area to the 3/4 power, Changizi found. This means the number of connectors increases in both brains and cities as S3/4, where S = surface area. Similarly, as cities and brains grow, the total number of highway exits and synapses – which share a similar function as terminal points along highways and neurons – increases with an exponent of about 9/8. The number of exits per highway and synapses per neuron were also closely aligned, with an exponent of approximately 3/8.

These and other findings are detailed in the paper “Common Scaling Laws for City Highway Systems and the Mammalian Neocortex,” published this week in the journal Complexity. The complete paper may be viewed online at the Complexity Web site at: http://www3.interscience.wiley.com/cgi-bin/fulltext/122539629/PDFSTART

“When scaling up in size and function, both cities and brains seem to follow similar empirical laws,” Changizi said. “They have to efficiently maintain a fixed level of connectedness, independent of the physical size of the brain or city, in order to work properly.”

Marc Destefano, clinical assistant professor in the Department of Cognitive Science at Rensselaer, co-authored the paper.

Earlier this summer, Changizi’s new eye-opening book, The Vision Revolution: How the Latest Research Overturns Everything We Thought We Knew About Human Vision, hit store shelves. Published by BenBella Books, The Vision Revolution investigates why vision has evolved as it has over millions of years, and challenges theories that have dominated the scientific literature for decades.

For more information on Changizi’s research, visit http://www.changizi.com and http://www.rpi.edu/dept/metasite/news/magazine/-march2009/human_superpowers.html

See Rensselaer’s recent news release at http://news.rpi.edu/update.do?artcenterkey=2599 for more information on his new book, The Vision Revolution.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>