Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of Climate Change on West Nile Virus

10.09.2013
The varied influence of climate change on temperature and precipitation may have an equally wide-ranging effect on the spread of West Nile virus, suggesting that public health efforts to control the virus will need to take a local rather than global perspective, according to a study published this week in the scientific journal Proceedings of the National Academy of Sciences.

University of Arizona researchers Cory Morin and Andrew Comrie developed a climate-driven mosquito population model to simulate the abundance across the southern United States of one type of mosquito known to carry and spread West Nile virus to humans.


Known as a vector for the West Nile virus, this Culex quinquefasciatus mosquito has landed on a human finger. Eliminating puddles and small containers of water can greatly reduce this mosquito's population. (Photo: CDC/Jim Gathany)

They found that, under the future climate conditions predicted by climate change models, many locations will see a lengthening of the mosquito season but shrinking summer mosquito populations due to hotter and dryer conditions allowing fewer larvae to survive.

However, these changes vary significantly depending on temperature and precipitation. For example, drops in summer mosquito populations are expected to be significant in the South, but not further north where there will still be enough rain to maintain summer breeding habitats and extreme temperatures are less common. These findings suggest that disease transmission studies and programs designed to control populations of disease-carrying mosquitos must be targeted locally to maximize their effectiveness, the authors argue.

"It used to be an open question whether climate change is going to make disease-carrying mosquitoes more abundant, and the answer is it will depend on the time and the location," said Morin, who did the study as part of his doctoral dissertation in the lab of Comrie, UA provost and professor in the UA's School of Geography and Development. Morin is now a postdoctoral researcher on Comrie's team.

"One assumption was that with rising temperatures, mosquitoes would thrive across the board," Morin said. "Our study shows this is unlikely. Rather, the effects of climate change are different depending on the region and because of that, the response of West Nile virus transmitting mosquito populations will be different as well."

"The mosquito species we study is subtropical, and at warmer temperatures the larvae develop faster," Morin explained. "However, there is a limit – if temperatures climb over that limit, mortality increases. Temperature, precipitation or both can limit the populations, depending on local conditions."

In the southwestern U.S. for example, hotter and drier summers are expected to delay the onset of mosquito season; however, late summer and fall rains are expected to result in a longer season. Conversely, the south-central U.S. will see fewer mosquito days due to less rain during summer and early fall. Higher temperatures projected for the shoulder seasons – spring and fall – will likely make for a longer mosquito season across much of the U.S., except in the Southwest during spring where severe drying inhibits population development.

Morin pointed out that while the study focused on one important part in West Nile virus' infectious cycle – mosquitoes of the species Culex quinquefasciatus – there are other mosquito species that transmit the virus. Furthermore, the virus also infects birds, another part in the cycle that was not included in the model simulations.

A so-called container breeder, Culex quinquefasciatus lays its eggs in small volumes of standing water. The larvae therefore depend heavily on precipitation, unlike species that prefer larger bodies of water such as lakes.

According to the Centers for Disease Control (CDC), 70 to 80 percent of people infected with West Nile virus do not develop symptoms. The remaining 20 percent will have flu-like symptoms for a week or two, while severe effects are limited to less than 1 percent of infected individuals. They include encephalitis (inflammation of the brain) or meningitis (inflammation of the lining of the brain and spinal cord) and mostly affect the elderly and individuals with compromised immune response.

First detected in North America in 1999, West Nile virus has since spread across the continental United States and Canada. Cases of humans infected with West Nile virus have been documented in every state in the contiguous United States. The areas of major epidemics vary from year to year. The largest most recent outbreak occurred in Texas in 2012, with 1,868 disease cases reported to the CDC.

"'Which locations are likely to experience epidemics in the future?' – those are the kinds of questions studies like ours may help prepare for," said Morin. "We don't model the actual virus, we only look at the vector, but our study informs at least one part of the ecology of the virus. It is unique in projecting the impacts of climate change on a West Nile vector."

Morin said the study could help managers and decision makers better anticipate how mosquito populations will respond to changes in climate and prepare accordingly.

"For example, if projected precipitation and temperature changes for a given area are indicating a longer mosquito season, public health officials can plan to adapt to that possibility through abatement and awareness campaigns.
This story and photos are online:
http://uanews.org/story/effects-of-climate-change-on-west-nile-virus
Contacts
Sources:
Cory W. Morin, 603-498-1246, cmorin@email.arizona.edu

Andrew C. Comrie, comrie@email.arizona.edu

UANews contact:
Daniel Stolte, 520-954-1964, stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu
http://uanews.org/story/effects-of-climate-change-on-west-nile-virus

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>