Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of Climate Change on West Nile Virus

10.09.2013
The varied influence of climate change on temperature and precipitation may have an equally wide-ranging effect on the spread of West Nile virus, suggesting that public health efforts to control the virus will need to take a local rather than global perspective, according to a study published this week in the scientific journal Proceedings of the National Academy of Sciences.

University of Arizona researchers Cory Morin and Andrew Comrie developed a climate-driven mosquito population model to simulate the abundance across the southern United States of one type of mosquito known to carry and spread West Nile virus to humans.


Known as a vector for the West Nile virus, this Culex quinquefasciatus mosquito has landed on a human finger. Eliminating puddles and small containers of water can greatly reduce this mosquito's population. (Photo: CDC/Jim Gathany)

They found that, under the future climate conditions predicted by climate change models, many locations will see a lengthening of the mosquito season but shrinking summer mosquito populations due to hotter and dryer conditions allowing fewer larvae to survive.

However, these changes vary significantly depending on temperature and precipitation. For example, drops in summer mosquito populations are expected to be significant in the South, but not further north where there will still be enough rain to maintain summer breeding habitats and extreme temperatures are less common. These findings suggest that disease transmission studies and programs designed to control populations of disease-carrying mosquitos must be targeted locally to maximize their effectiveness, the authors argue.

"It used to be an open question whether climate change is going to make disease-carrying mosquitoes more abundant, and the answer is it will depend on the time and the location," said Morin, who did the study as part of his doctoral dissertation in the lab of Comrie, UA provost and professor in the UA's School of Geography and Development. Morin is now a postdoctoral researcher on Comrie's team.

"One assumption was that with rising temperatures, mosquitoes would thrive across the board," Morin said. "Our study shows this is unlikely. Rather, the effects of climate change are different depending on the region and because of that, the response of West Nile virus transmitting mosquito populations will be different as well."

"The mosquito species we study is subtropical, and at warmer temperatures the larvae develop faster," Morin explained. "However, there is a limit – if temperatures climb over that limit, mortality increases. Temperature, precipitation or both can limit the populations, depending on local conditions."

In the southwestern U.S. for example, hotter and drier summers are expected to delay the onset of mosquito season; however, late summer and fall rains are expected to result in a longer season. Conversely, the south-central U.S. will see fewer mosquito days due to less rain during summer and early fall. Higher temperatures projected for the shoulder seasons – spring and fall – will likely make for a longer mosquito season across much of the U.S., except in the Southwest during spring where severe drying inhibits population development.

Morin pointed out that while the study focused on one important part in West Nile virus' infectious cycle – mosquitoes of the species Culex quinquefasciatus – there are other mosquito species that transmit the virus. Furthermore, the virus also infects birds, another part in the cycle that was not included in the model simulations.

A so-called container breeder, Culex quinquefasciatus lays its eggs in small volumes of standing water. The larvae therefore depend heavily on precipitation, unlike species that prefer larger bodies of water such as lakes.

According to the Centers for Disease Control (CDC), 70 to 80 percent of people infected with West Nile virus do not develop symptoms. The remaining 20 percent will have flu-like symptoms for a week or two, while severe effects are limited to less than 1 percent of infected individuals. They include encephalitis (inflammation of the brain) or meningitis (inflammation of the lining of the brain and spinal cord) and mostly affect the elderly and individuals with compromised immune response.

First detected in North America in 1999, West Nile virus has since spread across the continental United States and Canada. Cases of humans infected with West Nile virus have been documented in every state in the contiguous United States. The areas of major epidemics vary from year to year. The largest most recent outbreak occurred in Texas in 2012, with 1,868 disease cases reported to the CDC.

"'Which locations are likely to experience epidemics in the future?' – those are the kinds of questions studies like ours may help prepare for," said Morin. "We don't model the actual virus, we only look at the vector, but our study informs at least one part of the ecology of the virus. It is unique in projecting the impacts of climate change on a West Nile vector."

Morin said the study could help managers and decision makers better anticipate how mosquito populations will respond to changes in climate and prepare accordingly.

"For example, if projected precipitation and temperature changes for a given area are indicating a longer mosquito season, public health officials can plan to adapt to that possibility through abatement and awareness campaigns.
This story and photos are online:
http://uanews.org/story/effects-of-climate-change-on-west-nile-virus
Contacts
Sources:
Cory W. Morin, 603-498-1246, cmorin@email.arizona.edu

Andrew C. Comrie, comrie@email.arizona.edu

UANews contact:
Daniel Stolte, 520-954-1964, stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu
http://uanews.org/story/effects-of-climate-change-on-west-nile-virus

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>