Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on EEGs

25.08.2014

In a recent study reported in the Neural Regeneration Research, repeated-pulse transcranial magnetic stimulation was administered to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalogram signals using nonlinear dynamics.


Distribution of the 19 channels used to plot the electroencephalogram signal sample-entropy map.

Credit: Neural Regeneration Research

Additionally, researchers compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse transcranial magnetic stimulation at the Guangming.

Results showed that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial magnetic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.

###

Article: " Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms," by Xin Zhang1, Lingdi Fu2, Yuehua Geng2, Xiang Zhai3, Yanhua Liu4

(1 Tianjin Polytechnic University, Tianjin, China; 2 Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China; 3 Department of Otorhinolaryngology, Tianjin Huanhu Hospital, Tianjin, China; 4 Hebei College of Industry and Technology, Shijiazhuang, Hebei Province, China)

Zhang X, Fu LD, Geng YH, Zhai X, Liu YH. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms. Neural Regen Res. 2014;9(5):549-554.

Contact: Meng Zhao
eic@nrren.org
86-138-049-98773
Neural Regeneration Research
http://www.nrronline.org/

Meng Zhao | Eurek Alert!

Further reports about: Analysis Electrical Regeneration Technology electroencephalogram signals

More articles from Studies and Analyses:

nachricht New research reveals fish are smarter than we thought
31.10.2014 | University of Bath & Queen Mary University of London

nachricht Low Carb, High Fat Diets May Reduce Seizures in Tough-to-Treat Epilepsy
31.10.2014 | American Academy of Neurology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

Sculpting solar systems: Magnetic fields seen for first time

31.10.2014 | Physics and Astronomy

Here's Looking At You: Spooky Shadow Play Gives Jupiter a Giant Eye

31.10.2014 | Physics and Astronomy

New research reveals fish are smarter than we thought

31.10.2014 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>