Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Educational video games can boost motivation to learn, NYU, CUNY study shows

07.11.2013
Math video games can enhance students' motivation to learn, but it may depend on how students play, researchers at New York University and the City University of New York have found in a study of middle-schoolers.

While playing a math video game either competitively or collaboratively with another player—as compared to playing alone—students adopted a mastery mindset that is highly conducive to learning. Moreover, students' interest and enjoyment in playing the math video game increased when they played with another student.

Their findings, which appear in the Journal of Educational Psychology, point to new ways in which computer, console, or mobile educational games may yield learning benefits.

"We found support for claims that well-designed games can motivate students to learn less popular subjects, such as math, and that game-based learning can actually get students interested in the subject matter—and can broaden their focus beyond just collecting stars or points," says Jan Plass, a professor in NYU's Steinhardt School of Culture, Education, and Human Development and one of the study's lead authors.

"Educational games may be able to help circumvent major problems plaguing classrooms by placing students in a frame of mind that is conducive to learning rather than worrying about how smart they look," adds co-lead author Paul O'Keefe, an NYU postdoctoral fellow at the time of the study and now at Stanford University's Department of Psychology.

The researchers focused on how students' motivation to learn, as well as their interest and performance in math, was affected by playing a math video game either individually, competitively, or collaboratively.

Specifically, they looked at two main types of motivational orientations: mastery goal orientation, in which students focus on learning, improvement, and the development of abilities, and performance goal orientation, in which students focus on validating their abilities. For instance, in the classroom, a student may be focused on improving their math skills (mastery), or, instead, trying to prove how smart they are or trying to avoid looking incompetent compared their classmates (performance).

Researchers consistently find that a mastery goal orientation facilitates learning because students are focused on accruing knowledge and developing abilities. They also view mistakes and difficulties as part of the learning process—rather than an indictment of their lack of ability. By contrast, performance goal orientations may hurt the learning process, particularly for those who do not feel competent—for instance, students who fear looking less intelligent than their classmates may avoid opportunities that would, in fact, bolster their understanding of the material.

However, scholarship has shown that typical educational contexts—notably, classrooms—lead students to adopt stronger performance goal orientations than a mastery goal orientation.

Consequently, researchers have sought to understand how to promote students' mastery goal orientations and weaken the performance goal orientations that lead students to avoid potential learning opportunities.

One candidate is educational video games, which, at first glance, would seem to result in performance rather than mastery orientations given their competitive focus and that they are often played with others. But, given the popularity of gaming among school-aged students, exploring their potential value intrigued the study's authors.

To test this possibility, the researchers had middle-school students play the video game FactorReactor, which is designed to build math skills through problem solving and therefore serves as diagnostic for learning.

In order to test the impact of different settings on learning, students were randomly assigned to play the game alone, competitively against another student, or collaboratively with another student. The researchers controlled for students' abilities by conducting a pre-test.

The findings revealed that students who played the math game either competitively or collaboratively reported the strongest mastery goal orientations, which indicates that students adopted an optimal mindset for learning while playing the video game with others.

Their results also showed that students playing under competitive situations performed best in the game. In addition, those playing in both competitive and collaborative conditions experienced the greatest interest and enjoyment.

"The increased interest we observed in the competitive and collaborative conditions suggests that educational games can promote a desire to learn and intentions to re-engage in the material, and in the long run, may create independent and self-determined learners," notes O'Keefe.

The authors caution about generalizing their results, however.

"Although we found a host of beneficial outcomes associated with playing the game with a partner, our results may be limited to the educational content of the game, its design, or our experimental procedure," says Plass. "Future research will need to examine design features that optimize learning across curricula."

The study's other co-authors included: Elizabeth Hayward, Murphy Stein, and Ken Perlin of New York University and Bruce Homer and Jennifer Case of the City University of New York's Graduate Center, all of whom are members of the multi-institutional Games for Learning Institute (G4LI), co-directed by Perlin and Plass. The Games for Learning Institute is funded by Microsoft Research.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>