Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ecologists say metabolism accounts for why natural selection favors only some species

UCR-led study offers an explanation for life's organization

Why are some species of plants and animals favored by natural selection? And why does natural selection not favor other species similarly?

According to a UC Riverside-led research team, the answer lies in the rate of metabolism of a species – how fast a species consumes energy, per unit mass, per unit time.

The researchers studied 3006 species, the largest number of species ever analyzed in a single study. The species list encompasses much of the range of biological diversity on Earth – from bacteria to elephants, and algae to sapling trees.

To the researchers' surprise, they found the mean metabolic rate of the species at rest fell on a narrow range of values – 0.3 to 9 Watts per kilogram.

"This narrow range is in dramatic contrast to the 20 orders of magnitude difference in the body mass of the species we studied," said Bai-Lian Li, a professor of ecology at UC Riverside, who led the study along with two colleagues. "At physiological rest, the biosphere appears to run, on average, predominantly at the optimal rate defined by this narrow range of values. This remarkable phenomenon is likely associated with the pervasive biochemical universality of living matter, and could provide us with clues to understanding how life is organized."

Study results appear in the Nov. 4 issue of the Proceedings of the National Academy of Sciences.

According to Li, the metabolic optimum explains the ubiquitous and seemingly unrelated features of life organization we see all around us – complex adaptations such as animal breathing and flat, green leaves.

"Organisms whose designs fit the physiological window have been favored by natural selection across all of life's major kingdoms," he said. "This observed, narrow range might therefore be considered as the preferred, optimal range for the functioning of living matter as a whole."

Unlike the genetic code and protein composition, metabolic rate cannot be inherited from a common ancestor. Rather, a particular range of metabolic rates is maintained by natural selection.

"Species had to invent diverse tricks to remain near the metabolic optimum, from which the progressive evolutionary increase in body size – from prokaryotes to largest vertebrates and plants – was continually taking them away," Li said.

He was joined in the study by co-leaders Anastassia M. Makarieva and Victor G. Gorshkov of the Russian Academy of Sciences, St. Petersburg. Their co-authors on the research paper are Steven L. Chown of Stellenbosch University, South Africa; Peter B. Reich of the University of Minnesota, St. Paul; and Valery M. Gavrilov of Moscow State University, Russia.

Iqbal Pittalwala | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>