Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecologists say metabolism accounts for why natural selection favors only some species

05.11.2008
UCR-led study offers an explanation for life's organization

Why are some species of plants and animals favored by natural selection? And why does natural selection not favor other species similarly?

According to a UC Riverside-led research team, the answer lies in the rate of metabolism of a species – how fast a species consumes energy, per unit mass, per unit time.

The researchers studied 3006 species, the largest number of species ever analyzed in a single study. The species list encompasses much of the range of biological diversity on Earth – from bacteria to elephants, and algae to sapling trees.

To the researchers' surprise, they found the mean metabolic rate of the species at rest fell on a narrow range of values – 0.3 to 9 Watts per kilogram.

"This narrow range is in dramatic contrast to the 20 orders of magnitude difference in the body mass of the species we studied," said Bai-Lian Li, a professor of ecology at UC Riverside, who led the study along with two colleagues. "At physiological rest, the biosphere appears to run, on average, predominantly at the optimal rate defined by this narrow range of values. This remarkable phenomenon is likely associated with the pervasive biochemical universality of living matter, and could provide us with clues to understanding how life is organized."

Study results appear in the Nov. 4 issue of the Proceedings of the National Academy of Sciences.

According to Li, the metabolic optimum explains the ubiquitous and seemingly unrelated features of life organization we see all around us – complex adaptations such as animal breathing and flat, green leaves.

"Organisms whose designs fit the physiological window have been favored by natural selection across all of life's major kingdoms," he said. "This observed, narrow range might therefore be considered as the preferred, optimal range for the functioning of living matter as a whole."

Unlike the genetic code and protein composition, metabolic rate cannot be inherited from a common ancestor. Rather, a particular range of metabolic rates is maintained by natural selection.

"Species had to invent diverse tricks to remain near the metabolic optimum, from which the progressive evolutionary increase in body size – from prokaryotes to largest vertebrates and plants – was continually taking them away," Li said.

He was joined in the study by co-leaders Anastassia M. Makarieva and Victor G. Gorshkov of the Russian Academy of Sciences, St. Petersburg. Their co-authors on the research paper are Steven L. Chown of Stellenbosch University, South Africa; Peter B. Reich of the University of Minnesota, St. Paul; and Valery M. Gavrilov of Moscow State University, Russia.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>