Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Ebola-like virus native to Europe discovered

21.10.2011
New virus could be the first filovirus to cause disease in bats

A team of international researchers has discovered a new Ebola-like virus – Lloviu virus -- in bats from northern Spain. Lloviu virus is the first known filovirus native to Europe, they report in a study published in the journal PLOS Pathogens on Octobr 20th.

The study was a collaboration among scientists at the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health, the Instituto de Salud Carlos III (ISCIII) in Spain, Roche Life Sciences, Centro de Investigación Príncipe Felipe, Grupo Asturiano para el Estudio y Conservación de los Murciélagos, Consejo Suerior de Investigaciones Científicas and the Complutense University in Spain.

Filoviruses, which include well-known viruses like Ebola and Marburg, are among the deadliest pathogens in humans and non-human primates, and are generally found in East Africa and the Philippines. The findings thus expand the natural geographical distribution of filoviruses.

"The study is an opportunity to advance the knowledge of filoviruses' natural cycle," said Ana Negredo, one of the first authors of the study.

Scientists at ISCIII analyzed lung, liver, spleen, throat, brain and rectal samples from 34 bats found in caves in Asturias and Cantabria, Spain, following bat die-offs in France, Spain and Portugal in 2002 affecting mainly one bat species.

They screened these samples for a wide range of viruses using the polymerase chain reaction, a molecular technique that allows scientists to amplify genetic material, and. detected a filovirus. Filoviruses include ebolaviruses and marburgviruses, two viruses associated with severe disease in humans and other primates..

CII scientists used high-throughput sequencing to characterize the virus' genome. When they compared it to other well-known filovirus genomes, they found that Lloviu virus represents a class of viruses distantly related to all ebolaviruses and that it may have diverged from ebolaviruses about 68,000 years ago.

"The detection of this novel filovirus in Spain is intriguing because it is completely outside of its previously described range. We need to ascertain whether other filoviruses native to Europe exist, and more importantly, if and how it causes disease," said Gustavo Palacios, the other first author of the study.

Filoviruses typically do not make bats sick, but because the team of researchers only detected Lloviu virus in bats that had died and whose tissues showed signs of an immune response, they think Lloviu may be a cause for concern. They also did not detect Lloviu virus in samples of almost 1,300 healthy bats.

Bats have important roles in plant pollination, spreading plant seeds and controlling insect populations, and pathogens that attack bat populations could have dramatic ecological and health-related consequences.

"The Lloviu virus discovery highlights how much we still need to learn about the world of emerging infectious diseases and the importance of global collaboration and the One Health initiative in addressing the challenge," said CII Director Dr. Ian Lipkin.

This research was funded by the Defense Threat Reduction Agency, USAID PREDICT, the RICET Network on Tropical Diseases and the Ministerio de Educación y Ciencia in Spain.

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>