Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eat safer: Novel approach detects unknown food pathogens

18.10.2010
Technologies for rapid detection of bacterial pathogens are crucial to maintaining a secure food supply.

Researchers from the School of Science at Indiana University-Purdue University Indianapolis (IUPUI) and the Bindley Bioscience Center at Purdue University have developed a novel approach to automated detection and classification of harmful bacteria in food.

The investigators have designed and implemented a sophisticated statistical approach that allows computers to improve their ability to detect the presence of bacterial contamination in tested samples. These formulas propel machine-learning, enabling the identification of known and unknown classes of food pathogens.

The study appears in the October issue of the journal Statistical Analysis and Data Mining.

"The sheer number of existing bacterial pathogens and their high mutation rate makes it extremely difficult to automate their detection," said M. Murat Dundar, Ph.D., assistant professor of computer science in the School of Science at IUPUI and the university's principal investigator of the study. "There are thousands of different bacteria subtypes and you can't collect enough subsets to add to a computer's memory so it can identify them when it sees them in the future. Unless we enable our equipment to modify detection and identification based on what it has already seen, we may miss discovering isolated or even major outbreaks."

To detect and identify colonies of pathogens such as listeria, staphylococcus, salmonella, vibrio and E. coli based on the optical properties of their colonies, the researchers used a prototype laser scanner, developed by Purdue University researchers. Without the new enhanced machine-learning approach, the light-scattering sensor used for classification of bacteria is unable to detect classes of pathogens not explicitly programmed into the system's identification procedure.

"We are very excited because this new machine-learning approach is a major step towards a fully automated identification of known and emerging pathogens in real time, hopefully circumventing full-blown, food-borne illness outbreaks in the near future. Ultimately we would like to see this deployed to tens of centers as part of a national bio-warning system," said Dundar.

"Our work is not based on any particular property of light scattering detection and therefore it can potentially be applied to other label-free techniques for classification of pathogenic bacteria, such as various forms of vibrational spectroscopy," added Bartek Rajwa, Ph.D., the Purdue principal investigator of the study.

Dundar and his colleagues believe this methodology can be expanded to the analysis of blood and other biological samples as well.

This study was supported by a grant from the National Institute of Allergy and Infectious Diseases.

Co-authors of "A Machine-Learning Approach to Detecting Unknown Bacterial Serovars" study in addition to Dundar and Rajwa are Ferit Akova, a graduate student at the School of Science at IUPUI, and Purdue University researchers V. Jo Davisson, E. Daniel Hirleman, Arun K. Bhunia, and J. Paul Robinson.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>