Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Easter Island Compound Extends Lifespan of Old Mice

10.07.2009
The University of Texas Health Science Center at San Antonio and two collaborating centers report that rapamycin, a compound first discovered in soil of Easter Island, extended the expected lifespan of middle-aged mice by 28 percent to 38 percent. In human terms, this would be greater than the predicted increase in extra years of life if cancer and heart disease were both cured and prevented.

The giant monoliths of Easter Island are worn, but they have endured for centuries. New research suggests that a compound first discovered in the soil of the South Pacific island might help us stand the test of time, too.

Today in the journal Nature, The University of Texas Health Science Center at San Antonio and two collaborating centers reported that the Easter Island compound – called “rapamycin” after the island’s Polynesian name, Rapa Nui – extended the expected lifespan of middle-aged mice by 28 percent to 38 percent. In human terms, this would be greater than the predicted increase in extra years of life if cancer and heart disease were both cured and prevented.

The rapamycin was given to the mice at an age equivalent to 60 years old in humans.

The studies are part of the National Institute on Aging (NIA) Interventions Testing Program, which seeks compounds that might help people remain active and disease-free throughout their lives. The other two centers involved are the University of Michigan at Ann Arbor and Jackson Laboratory in Bar Harbor, Maine.

The Texas study was led by scientists at two institutes at the UT Health Science Center: the Institute of Biotechnology (IBT) and the Barshop Institute for Longevity and Aging Studies.

“I’ve been in aging research for 35 years and there have been many so-called ‘anti-aging’ interventions over those years that were never successful,” said Arlan G. Richardson, Ph.D., director of the Barshop Institute. “I never thought we would find an anti-aging pill for people in my lifetime; however, rapamycin shows a great deal of promise to do just that.”

Versatile compound

Discovered in the 1970s, rapamycin was first noted for its anti-fungal properties and later was used to prevent organ rejection in transplant patients. It also is used in stents, which are implanted in patients during angioplasty to keep coronary arteries open. It is in clinical trials for the treatment of cancer.

The new aging experiments found that adding rapamycin to the diet of older mice increased their lifespan. The results were the same in Texas, Michigan and Maine.

“We believe this is the first convincing evidence that the aging process can be slowed and lifespan can be extended by a drug therapy starting at an advanced age,” said Randy Strong, Ph.D., who directs the NIA-funded Aging Interventions Testing Center in San Antonio. He is a professor of pharmacology at the UT Health Science Center and a senior research career scientist with the South Texas Veterans Health Care System.

The findings have “interesting implications for our understanding of the aging process,” said Z. Dave Sharp, Ph.D., director of the Institute of Biotechnology and professor and chairman of the Health Science Center’s Department of Molecular Medicine.

“In addition,” Dr. Sharp said, “the findings have immediate implications for preventive medicine and human health, in that rapamycin is already in clinical usage.”

Molecular pathway

Aging researchers currently acknowledge only two life-extending interventions in mammals: calorie restriction and genetic manipulation. Rapamycin appears to partially shut down the same molecular pathway as restricting food intake or reducing growth factors.

It does so through a cellular protein called mTOR (mammalian target of rapamycin), which controls many processes in cell metabolism and responses to stress.

A decade ago, Dr. Sharp proposed to his colleagues that mTOR might be involved in calorie restriction. “It seemed like an off-the-wall idea at that time,” Dr. Richardson said.

In 2004, a year after the launch of the NIA Interventions Testing Program, Dr. Sharp submitted a proposal that rapamycin be studied for anti-aging effects. The proposal was approved, and testing centers in San Antonio and elsewhere began to include rapamycin in the diets of mice.

The male and female mice were cross-bred from four different strains of mice to more closely mimic the genetic diversity and disease susceptibility of the human population.

Dr. Strong soon recognized a problem: Rapamycin was not stable enough in food or in the digestive tract to register in the animals’ blood level. He worked with the Southwest Research Institute in San Antonio to improve the bioavailability of the compound through a process called microencapsulation. The reformulated drug was stable in the diet fed to the mice and bypassed the stomach to release in the intestine, where it could more reliably enter the bloodstream.

Older mice

The original goal was to begin feeding the mice at 4 months of age, but because of the delay caused by developing the new formulation, the mice were not started until they were 20 months old – the equivalent of 60 years of age in humans.

The teams decided to try the rapamycin intervention anyway.

“I did not think that it would work because the mice were too old when the treatment was started,” Dr. Richardson said. “Most reports indicate that calorie restriction doesn’t work when implemented in old animals. The fact that rapamycin increases lifespan in relatively old mice was totally unexpected.”

Added Dr. Strong: “This study has clearly identified a potential therapeutic target for the development of drugs aimed at preventing age-related diseases and extending healthy lifespan. If rapamycin, or drugs like rapamycin, works as envisioned, the potential reduction in overall health cost for the U.S. and the world will be enormous.”

Leaders of the other interventions testing centers are Richard Miller, M.D., Ph.D., of the University of Michigan and David Harrison, Ph.D., at the Jackson Laboratories.

About The University of Texas Health Science Center at San Antonio

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>