Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's original ancestor was LUCA, not Adam nor Eve

19.12.2008
University of Montreal and University of Lyon research study on origins of life in Nature

Here's another argument against intelligent design. An evolutionary geneticist from the Université de Montréal, together with researchers from the French cities of Lyon and Montpellier, have published a ground-breaking study that characterizes the common ancestor of all life on earth, LUCA (Last Universal Common Ancestor). Their findings, presented in a recent issue of Nature, show that the 3.8-billion-year-old organism was not the creature usually imagined.

The study changes ideas of early life on Earth. "It is generally believed that LUCA was a heat-loving or hyperthermophilic organism. A bit like one of those weird organisms living in the hot vents along the continental ridges deep in the oceans today (above 90 degrees Celsius)," says Nicolas Lartillot, the study's co-author and a bio-informatics professor at the Université de Montréal. "However, our data suggests that LUCA was actually sensitive to warmer temperatures and lived in a climate below 50 degrees."

The research team compared genetic information from modern organisms to characterize the ancient ancestor of all life on earth. "Our research is much like studying the etymology of modern languages so as to reveal fundamental things about their evolution," says professor Lartillot. "We identified common genetic traits between animals, plant, bacteria, and used them to create a tree of life with branches representing separate species. These all stemmed from the same trunk – LUCA, the genetic makeup that we then further characterized."

Reconciling conflicting data

The group's findings are an important step towards reconciling conflicting ideas about LUCA. In particular, they are much more compatible with the theory of an early RNA world, where early life on Earth was composed of ribonucleic acid (RNA), rather than deoxyribonucleic acid (DNA).

However, RNA is particularly sensitive to heat and is unlikely to be stable in the hot temperatures of the early Earth. The data of Dr. Lartillot with his collaborators indicate that LUCA found a cooler micro-climate to develop, which helps resolve this paradox and shows that environmental micro domains played a critical role in the development of life on Earth.

From RNA to DNA: Proof of evolution

"It is only in a subsequent step that LUCA's descendants discovered the more thermostable DNA molecule, which they independently acquired (presumably from viruses), and used to replace the old and fragile RNA vehicle. This invention allowed them to move away from the small cool microclimate, evolved and diversify into a variety of sophisticated organisms that could tolerate heat," adds Dr. Lartillot.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.umontreal.ca
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature07393.html

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>