Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Study Finds Brighter Fluorescent Lights Prevent Myopia

09.05.2012
Researchers at the University of Alabama at Birmingham hope to one day use fluorescent light bulbs to slow nearsightedness, which affects 40 percent of American adults and can cause blindness.

In an early step in that direction, results of a study found that small increases in daily artificial light slowed the development of nearsightedness by 40 percent in tree shrews, which are close relatives of primates.

The team, led by Thomas Norton, Ph.D., professor in the UAB Department of Vision Sciences, presented the study results today at the 2012 Association for Research in Vision and Ophthalmology annual meeting in Ft. Lauderdale.

People can see clearly because the front part of the eye bends light and focuses it on the retina in back. Nearsightedness, also called myopia, occurs when the physical length of the eye is too long, causing light to focus in front of the retina and blurring images.

Myopia has many causes, some related to inheritance and some to the environment. Research in recent years had, for instance, suggested that children who spent more time outdoors, presumably in brighter outdoor light, had less myopia as young adults. That raised the question of whether artificial light, like sunlight, could help reduce myopia development, without the risks of prolonged sun exposure, such as skin cancer and cataracts.

“Our hope is to develop programs that reduce the rate of myopia using energy efficient, fluorescent lights for a few hours each day in homes or classrooms,” said John Siegwart, Ph.D., research assistant professor in UAB Vision Sciences and co-author of the study. “Trying to prevent myopia by fixing defective genes through gene therapy or using a drug is a multi-year, multimillion-dollar effort with no guarantee of success. We hope to make a difference just with light bulbs.”

Sorting through theories

Work over 25 years had shown that putting a goggle over one eye of a study animal, one that lets in light but blurs images, causes the eye to grow too long, which in turn causes myopia. Other past studies had shown that elevated light levels could reduce myopia under these conditions, whether the light was produced by halogen lamps, metal halide bulbs or daylight. The current study is the first to show that the development of myopia can be slowed by increasing daily fluorescent light levels.

One prevailing theory on myopia-related shape changes in the eye is that they are caused by the blurriness of images experienced while reading or doing other near-work chores. Another holds some people develop myopia because they have low levels of vitamin D, which goes up with exposure to sunlight and could explain the connection between outdoor light and reduced myopia. A third theory, one reinforced by the current results, is that bright light causes an increase in levels of dopamine, a signaling molecule in the retina.

To test the theories, the team used a goggle that lets in light but no images to produce myopia in one eye of each tree shrew. They found that a group exposed to elevated fluorescent light levels for eight hours per day developed 47 percent less myopia than a control group exposed to normal indoor lighting, even though the images were neither more nor less blurry. They also found that animals fed vitamin D supplements developed myopia just like ones without the supplement. Given these results, the team is now experimenting with light levels and treatment times to see if a short, bright light treatment could be effective. They have also begun studies looking at the effect of elevated light on retinal dopamine levels as it relates to the reduction of myopia.

“If we can find the best kind of light, treatment period and light level, we’ll have the scientific justification to begin studies raising light levels in schools, for instance,” said Norton. “Compact fluorescent bulbs use much less electricity than standard light bulbs, and future programs raising light levels will have more impact the less expensive they are.”

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is an internationally renowned research university and academic medical center and the state of Alabama’s largest employer with some 18,000 employees and an economic impact of more than $4.6 billion on the state. UAB has been named to the President’s Higher Education Community Service Honor Roll for exemplary service to America’s communities, and in 2008 ranked nationally as one of the top 5 “Best Places to Work in Academia” in a survey published by The Scientist magazine. For more information, please visit www.uab.edu.

EDITOR’S NOTE: The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on all consecutive references.

VIDEO: www.youtube.com/uabnews TEXT: www.uab.edu/news TWEETS: www.twitter.com/uabnews

Greg Williams | Newswise Science News
Further information:
http://www.uab.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>