Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early heart attack therapy with bone marrow extract improves cardiac function

A UCSF study for the treatment of heart failure after heart attack found that the extract derived from bone marrow cells is as effective as therapy using bone marrow stem cells for improving cardiac function, decreasing the formation of scar tissue and improving cardiac pumping capacity after heart attack.

Findings were published online and in the July 2009 issue of the Journal of Molecular Therapy. The cover of the journal features a microscope image of cells from the UCSF study.

The studies were done in mice using a novel stem cell delivery method developed by UCSF researchers to show that the extract from bone marrow cells is as beneficial to cardiac function as are intact, whole cells. Both the cell and cell extract therapies resulted in the presence of more blood vessels and less cardiac cell death, or apoptosis, than no therapy. The study also showed that heart function benefitted despite the finding that few of the injected cells remained in the heart at one month after therapy.

"Peer-reviewed medical literature is controversial as to whether bone marrow cells differentiate into cardiomyocytes, or cardiac muscle cells, but there is general agreement that stem cell therapy with these cells results in some level of functional improvement after a heart attack. The exact mechanism for this is not yet clear. Our results confirm that whole cells are not necessarily required in order to see the beneficial effects of bone marrow cell therapy," said Yerem Yeghiazarians, MD, study author, cardiologist and director of UCSF's Translational Cardiac Stem Cell Development Program.

UCSF researchers are investigating these new therapies to improve cardiac function after heart attack in an effort to prevent heart failure. Heart failure occurs when cardiac muscle is damaged and scar tissue replaces beating cardiomyocytes. As scar replaces healthy tissue, it causes the heart to enlarge and lose its pumping capacity. When the pumping capacity decreases, the heart fills with fluid, which moves to the lungs and can lead to organ failure and death.

"Current therapies improve symptoms but do not replace scar tissue. Our hope is to use stem cells to decrease the scar, minimize the loss of cardiac muscle and maintain or even improve the cardiac function after a heart attack," Yeghiazarians said.

Using a novel, closed-chest, ultrasound-guided injection technique developed by Yeghiazarians and his colleagues, the team administered three different groups with bone marrow cells, bone marrow cell extract, or saline (for the control group). The injections were administered at day three after heart attack – a timeframe somewhat similar to human biology on days six-to-seven after heart attack.

The team found at day 28 that both the bone marrow cell group and the extract group had significantly smaller heart damage than the control group.

Left-ventricular ejection fraction (LVEF), or the measurement of blood pumped out of the ventricles per heart beat, fell uniformly in each group after heart attack from a level of about 57.2 percent to 38.4 percent. At day 28 (and after the therapies had been administered on day three), LVEF improved in both the bone marrow cell and extract groups to approximately 40.6 and 39.1 percent as compared to approximately 33.2 percent for the control group.

"We hope our findings can help in the development of new therapies for improving heart function after the deleterious effects of a heart attack," says Yeghiazarians.

The team is continuing to evaluate bone marrow cell and extract therapies in order to identify the proteins and factors within the extract and gain insight into the possible mechanisms of cardiac functional improvement.

"The best acute therapy for a heart attack remains early recognition and revascularization of the blocked artery to minimize the damage to the heart muscle," said Yeghiazarians. "Although the prognosis depends on multiple factors, what we know for sure is that the sooner a heart attack gets diagnosed and cardiologists open the blocked artery, the better the long-term outcome. There are a number of ongoing stem cell-based clinical trials, and depending on further research and the outcome of these studies, we might have new therapies for the treatment of patients who suffer from a heart attack in the not-too-distant future."

Additional authors are Andrew J. Boyle, MD, PhD; Matthew L. Springer, PhD; William Grossman, MD; Yan Zhang, MD, PhD; Richard E. Sievers; Franca S. Angeli, MD; Juha Koskenvuo, MD, PhD; Junya Takagawa, MD, PhD; Mohan N. Viswanathan, MD; Jianqin Ye, MD, PhD; Neel K. Kapasi; Petros Minasi; Rachel Mirsky; Megha Prasad; Shereen A. Saini; Henry Shih; and Maelene L. Wong of UCSF.

The study was supported by the UCSF Cardiac Stem Cell Foundation, UCSF Research Evaluation and Allocation Committee and the Wayne and Gladys Valley Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit

Lauren Hammit | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>