Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early heart attack therapy with bone marrow extract improves cardiac function

02.07.2009
A UCSF study for the treatment of heart failure after heart attack found that the extract derived from bone marrow cells is as effective as therapy using bone marrow stem cells for improving cardiac function, decreasing the formation of scar tissue and improving cardiac pumping capacity after heart attack.

Findings were published online and in the July 2009 issue of the Journal of Molecular Therapy. The cover of the journal features a microscope image of cells from the UCSF study.

The studies were done in mice using a novel stem cell delivery method developed by UCSF researchers to show that the extract from bone marrow cells is as beneficial to cardiac function as are intact, whole cells. Both the cell and cell extract therapies resulted in the presence of more blood vessels and less cardiac cell death, or apoptosis, than no therapy. The study also showed that heart function benefitted despite the finding that few of the injected cells remained in the heart at one month after therapy.

"Peer-reviewed medical literature is controversial as to whether bone marrow cells differentiate into cardiomyocytes, or cardiac muscle cells, but there is general agreement that stem cell therapy with these cells results in some level of functional improvement after a heart attack. The exact mechanism for this is not yet clear. Our results confirm that whole cells are not necessarily required in order to see the beneficial effects of bone marrow cell therapy," said Yerem Yeghiazarians, MD, study author, cardiologist and director of UCSF's Translational Cardiac Stem Cell Development Program.

UCSF researchers are investigating these new therapies to improve cardiac function after heart attack in an effort to prevent heart failure. Heart failure occurs when cardiac muscle is damaged and scar tissue replaces beating cardiomyocytes. As scar replaces healthy tissue, it causes the heart to enlarge and lose its pumping capacity. When the pumping capacity decreases, the heart fills with fluid, which moves to the lungs and can lead to organ failure and death.

"Current therapies improve symptoms but do not replace scar tissue. Our hope is to use stem cells to decrease the scar, minimize the loss of cardiac muscle and maintain or even improve the cardiac function after a heart attack," Yeghiazarians said.

Using a novel, closed-chest, ultrasound-guided injection technique developed by Yeghiazarians and his colleagues, the team administered three different groups with bone marrow cells, bone marrow cell extract, or saline (for the control group). The injections were administered at day three after heart attack – a timeframe somewhat similar to human biology on days six-to-seven after heart attack.

The team found at day 28 that both the bone marrow cell group and the extract group had significantly smaller heart damage than the control group.

Left-ventricular ejection fraction (LVEF), or the measurement of blood pumped out of the ventricles per heart beat, fell uniformly in each group after heart attack from a level of about 57.2 percent to 38.4 percent. At day 28 (and after the therapies had been administered on day three), LVEF improved in both the bone marrow cell and extract groups to approximately 40.6 and 39.1 percent as compared to approximately 33.2 percent for the control group.

"We hope our findings can help in the development of new therapies for improving heart function after the deleterious effects of a heart attack," says Yeghiazarians.

The team is continuing to evaluate bone marrow cell and extract therapies in order to identify the proteins and factors within the extract and gain insight into the possible mechanisms of cardiac functional improvement.

"The best acute therapy for a heart attack remains early recognition and revascularization of the blocked artery to minimize the damage to the heart muscle," said Yeghiazarians. "Although the prognosis depends on multiple factors, what we know for sure is that the sooner a heart attack gets diagnosed and cardiologists open the blocked artery, the better the long-term outcome. There are a number of ongoing stem cell-based clinical trials, and depending on further research and the outcome of these studies, we might have new therapies for the treatment of patients who suffer from a heart attack in the not-too-distant future."

Additional authors are Andrew J. Boyle, MD, PhD; Matthew L. Springer, PhD; William Grossman, MD; Yan Zhang, MD, PhD; Richard E. Sievers; Franca S. Angeli, MD; Juha Koskenvuo, MD, PhD; Junya Takagawa, MD, PhD; Mohan N. Viswanathan, MD; Jianqin Ye, MD, PhD; Neel K. Kapasi; Petros Minasi; Rachel Mirsky; Megha Prasad; Shereen A. Saini; Henry Shih; and Maelene L. Wong of UCSF.

The study was supported by the UCSF Cardiac Stem Cell Foundation, UCSF Research Evaluation and Allocation Committee and the Wayne and Gladys Valley Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit www.ucsf.edu.

Lauren Hammit | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>