Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early Bottlenecks in Developing Biopharmaceutical Products Delay Commercialization


An analysis of patented university inventions licensed to biotechnology firms has revealed early bottlenecks on the path to commercialization. To open these roadblocks, the researchers suggest that better communication of basic research results during the discovery stage could lead to faster commercialization down the road.

Biopharmaceutical drugs are frequently derived from discoveries made in university laboratories and licensed to biotechnology firms. Bottlenecks are well known during clinical trials, which have a high failure rate.

Georgia Institute of Technology

From left to right, Jerry Thursby, Matthew Higgins and Marie Thursby. The research team identified bottlenecks in the development of biopharmaceutical products and proposes a way to avoid the setbacks.

But a new study pinpoints how much time is lost earlier in the pathway, when biotech companies give up on an invention and transfer the technology to other biotech firms for repurposing in a new disease category.

Companies rarely share their basic research on an invention, which highlights what the researchers consider to be an underappreciated cost of commercialization as basic science research is then repeated, postponed, or never performed.

“The timeline for commercialization is much longer than most people think. There is so much turmoil and churn within the process,” said co-author Jerry Thursby, a professor and the Ernest Scheller, Jr. Chair in Innovation, Entrepreneurship, and Commercialization at the Scheller College of Business at the Georgia Institute of Technology.

The study was sponsored by the National Institutes of Health (NIH) and was published August 20 in the journal Science Translational Medicine.

The standard path to the marketplace for biotechnology is for universities to do most of the basic research and then license a discovery to a small biotechnology firm that advances the research. The small biotech firm will then sublicense the discovery to a large biotechnology firm that can afford to run clinical trials.

The study found that basic research rarely proceeds in this straightforward path to commercialization, often zigzagging across biotech firms and research areas before a drug is finally developed.

“What these data reveal is that there’s a lot of bench to bench translational research. It’s not linear,” said Marie Thursby, a study co-author and the Hal and John Smith Chair in Entrepreneurship at the Scheller College of Business. Matthew Higgins, an associate professor of strategic management, was also a co-author of the study.

For the study, the researchers built a database of 835 patents in 342 university licenses with biotech firms. The researchers then traced the path of patents to document whether they were subsequently sublicensed to another firm for testing in a new disease category or whether the sublicense was to a large firm for clinical trials or marketing. Sublicensing often resets the development timeline in what the authors refer to as bench-to-bench translational research.

“A very large fraction of the time, an invention pops out as something else and the timeline for the discovery stage starts all over again,” said Jerry Thursby.
Of the 835 inventions studied, 27 percent appeared in a second license. The average time between invention and first license was five and a half years, and the average time between first- and second-license was three and a half years.

This time span for the upstream phase of the translation process is substantial, the study says, given that the average time from discovery to approval of new drugs (including biologics) by the U.S. Food and Drug Administration (FDA) is 13 years.

Of the first-licenses that list a stage of development, 92 percent were either at the discovery or lead molecule stages (the earliest two stages, respectively), with only 6 percent listed in clinical trials. Among the second-licenses, only 22 percent were in clinical trials or beyond.

“Nobody knew the magnitude of how much licensing changes and the stages at which they change,” said Marie Thursby. “The biotechnology industry is quite fragmented, and there are all sorts of informational problems.”

This analysis of early-stage biomedical translation suggests that stakeholders need to design policies and initiatives that enhance early translation by more efficiently driving more inventions into multiple disease pipelines.

One option might be the formation of an open-source translational research database that complements, where patents and licenses for fundamental biomedical research believed to be destined for eventual therapeutic use initially would be logged and shared.

“What might be a failure to a biotech firm could be a success to society as a whole,” Jerry Thursby said.

This research is supported and based on three separate subcontracts with the Office of Science Policy Analysis, Office of the Director, National Institutes of Health, under award number HHSN26320100002IC. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Marie Thursby, et al., “Bench-to-Bench Bottlenecks in Translation.” (Science Translational Medicine, August 2014).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA

Contact Information

Brett Israel
Communications Officer II
Phone: 404-385-1933

Brett Israel | newswise

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>