Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Bottlenecks in Developing Biopharmaceutical Products Delay Commercialization

22.08.2014

An analysis of patented university inventions licensed to biotechnology firms has revealed early bottlenecks on the path to commercialization. To open these roadblocks, the researchers suggest that better communication of basic research results during the discovery stage could lead to faster commercialization down the road.

Biopharmaceutical drugs are frequently derived from discoveries made in university laboratories and licensed to biotechnology firms. Bottlenecks are well known during clinical trials, which have a high failure rate.


Georgia Institute of Technology

From left to right, Jerry Thursby, Matthew Higgins and Marie Thursby. The research team identified bottlenecks in the development of biopharmaceutical products and proposes a way to avoid the setbacks.

But a new study pinpoints how much time is lost earlier in the pathway, when biotech companies give up on an invention and transfer the technology to other biotech firms for repurposing in a new disease category.

Companies rarely share their basic research on an invention, which highlights what the researchers consider to be an underappreciated cost of commercialization as basic science research is then repeated, postponed, or never performed.

“The timeline for commercialization is much longer than most people think. There is so much turmoil and churn within the process,” said co-author Jerry Thursby, a professor and the Ernest Scheller, Jr. Chair in Innovation, Entrepreneurship, and Commercialization at the Scheller College of Business at the Georgia Institute of Technology.

The study was sponsored by the National Institutes of Health (NIH) and was published August 20 in the journal Science Translational Medicine.

The standard path to the marketplace for biotechnology is for universities to do most of the basic research and then license a discovery to a small biotechnology firm that advances the research. The small biotech firm will then sublicense the discovery to a large biotechnology firm that can afford to run clinical trials.

The study found that basic research rarely proceeds in this straightforward path to commercialization, often zigzagging across biotech firms and research areas before a drug is finally developed.

“What these data reveal is that there’s a lot of bench to bench translational research. It’s not linear,” said Marie Thursby, a study co-author and the Hal and John Smith Chair in Entrepreneurship at the Scheller College of Business. Matthew Higgins, an associate professor of strategic management, was also a co-author of the study.

For the study, the researchers built a database of 835 patents in 342 university licenses with biotech firms. The researchers then traced the path of patents to document whether they were subsequently sublicensed to another firm for testing in a new disease category or whether the sublicense was to a large firm for clinical trials or marketing. Sublicensing often resets the development timeline in what the authors refer to as bench-to-bench translational research.

“A very large fraction of the time, an invention pops out as something else and the timeline for the discovery stage starts all over again,” said Jerry Thursby.
Of the 835 inventions studied, 27 percent appeared in a second license. The average time between invention and first license was five and a half years, and the average time between first- and second-license was three and a half years.

This time span for the upstream phase of the translation process is substantial, the study says, given that the average time from discovery to approval of new drugs (including biologics) by the U.S. Food and Drug Administration (FDA) is 13 years.

Of the first-licenses that list a stage of development, 92 percent were either at the discovery or lead molecule stages (the earliest two stages, respectively), with only 6 percent listed in clinical trials. Among the second-licenses, only 22 percent were in clinical trials or beyond.

“Nobody knew the magnitude of how much licensing changes and the stages at which they change,” said Marie Thursby. “The biotechnology industry is quite fragmented, and there are all sorts of informational problems.”

This analysis of early-stage biomedical translation suggests that stakeholders need to design policies and initiatives that enhance early translation by more efficiently driving more inventions into multiple disease pipelines.

One option might be the formation of an open-source translational research database that complements clinicaltrials.gov, where patents and licenses for fundamental biomedical research believed to be destined for eventual therapeutic use initially would be logged and shared.

“What might be a failure to a biotech firm could be a success to society as a whole,” Jerry Thursby said.

This research is supported and based on three separate subcontracts with the Office of Science Policy Analysis, Office of the Director, National Institutes of Health, under award number HHSN26320100002IC. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Marie Thursby, et al., “Bench-to-Bench Bottlenecks in Translation.” (Science Translational Medicine, August 2014).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews

Contact Information

Brett Israel
Communications Officer II
brett.israel@comm.gatech.edu
Phone: 404-385-1933

Brett Israel | newswise

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>