Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earlier flu viruses provided some immunity to current H1N1 influenza

16.10.2009
University of California, Davis, researchers studying the 2009 H1N1 influenza virus, formerly referred to as "swine flu," have identified a group of immunologically important sites on the virus that are also present in seasonal flu viruses that have been circulating for years. These molecular sites appear to result in some level of immunity to the new virus in people who were exposed to the earlier influenza viruses.

More than a dozen structural sites, or epitopes, in the virus may explain why many people over the age of 60, who were likely exposed to similar viruses earlier in life, carry antibodies or other type of immunity against the new virus, immune responses that could be attributed to earlier flu exposure and vaccinations.

Researchers Zheng Xing, a project scientist, and Carol Cardona, a veterinarian and Cooperative Extension specialist, both of the UC Davis School of Veterinary Medicine, report their findings online in the journal of Emerging Infectious Diseases. The report will appear in the November print edition of the journal, published by the Centers for Disease Control and Prevention.

"These findings indicate that human populations may have some level of existing immunity to the pandemic H1N1 influenza and may explain why the 2009 H1N1-related symptoms have been generally mild," Cardona said.

"Our hypothesis, based on the application of data collected by other researchers, suggests that cell-mediated immunity, as opposed to antibody-mediated immunity, may play a key role in lowering the disease-causing ability, or pathogenicity, of the 2009 H1N1 influenza," Xing added.

He noted that immune responses based on production of specific cells, known as cytotoxic T-cells, have been largely neglected in evaluating the efficacy of flu vaccinations. In this type of immune response, the T-cells and the antiviral chemicals that they secrete attack the invading viruses.

About 2009 H1N1 influenza

The 2009 H1N1 virus is a new strain of influenza that first appeared in the United States in April 2009. Early on, it was referred to as "swine flu" because it was genetically similar to influenza viruses that normally occur in pigs in North America. Further study, however, revealed that the virus actually included genes from viruses found in birds and humans, as well as pigs.

At first, this H1N1 influenza virus apparently caused a high number of deaths among patients in Mexico and among people with certain pre-existing medical conditions. But as it has progressed to become a pandemic or geographically widespread virus, H1N1 has caused relatively mild symptoms and few deaths.

One hallmark of this new influenza virus, according to the Centers for Disease Control and Prevention, has been the presence of pre-existing antibodies against the virus in about one third of H1N1 2009 patients over the age of 60, a phenomenon that suggested some levels of immunity may have existed to the new pandemic H1N1 virus. The UC Davis research

To probe this phenomenon, the UC Davis researchers surveyed data from earlier studies of epitopes known to exist on different strains of seasonal influenza A. They found that these epitopes, present in other seasonal H1N1 influenza strains around the world and capable of triggering an immune response, were also present in the strains of H1N1 2009 that were found in California, Texas and New York.

Interestingly, although previous H1N1 viruses seem to have produced a protective antibody response in exposed people, these antibodies largely did not provide cross-protection for individuals infected with the H1N1 2009 strain of influenza. The researchers theorize that, rather than stimulating protective antibodies, the epitopes of the new H1N1 2009 virus produced an immune response by triggering production of cytotoxic T-cells, which boost a person's immune defenses by killing infected cells and attacking the invading viruses.

Humans can mount two types of immune responses. One type is produced when the invading virus triggers production of protective antibodies that circulate in the bloodstream, and the other type, described above, is known as a cell-mediated immune response. It is produced when the invading virus triggers the activation of cytotoxic T-cells, a process that helps clear the virus from the body. Evidence from earlier studies suggests that cytotoxic T-cell immune immunity can be caused by either an active viral infection or by vaccination against such a virus.

Implications for avian influenza

The researchers note that about 80 percent of the epitopes found in seasonal influenza and flu vaccine viruses are also present in the highly pathogenic H5N1, or avian influenza, virus. They suggest that these epitopes may have protected some individuals infected with the highly pathogenic H5N1 virus through cytotoxic T-cell immunity.

However, the H5N1 virus rapidly reproduces itself and spreads so quickly within vital organs that the body may not be able to launch protective immunity, thus accounting for the high fatality rate of avian influenza.

Furthermore, only a fraction of the human population can recognize the specific epitopes necessary to cause the appropriate protective immune response, which may explain why the H1N1 2009 virus, as well as avian influenza, may vary in severity from person to person.

Xing and Cardona propose that immunity acquired from seasonal influenza or flu vaccinations may provide partial protection for patients infected with the avian influenza virus due to the shared epitopes essential for cytotoxic T-cell immunity.

This is supported by statistics from the World Health Organization indicating that there have been fewer avian influenza infections in people 40 years and older than there were in people under that age, and that the fatality rate of avian influenza was just 32 percent in the older age group but 59 percent in the younger group.

The researchers, therefore, suggest that repeated exposure to seasonal influenza viruses or flu vaccinations may have resulted in cytotoxic T-cell immunity to avian influenza, and that the same type of immunity may also have developed in people exposed to the H1N1 virus.

###

Funding for this study was provided by grants from the Department of Homeland Security's National Center for Foreign Animal and Zoonotic Disease Defense, and by the UC Davis Center for California Food Animal Health.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>