Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

E20 Fuel Reduces Carbon Monoxide and Hydrocarbon Emissions in Automobiles

30.03.2010
New study indicates ethanol-gasoline blend also has no measurable impact on drivability

A new study by the Center for Integrated Manufacturing Studies at Rochester Institute of Technology indicates that the use of E20 fuel, which blends 20 percent ethanol with gasoline, reduces the tail pipe emissions of hydrocarbons and carbon monoxide, compared with traditional gasoline or E10 blends.

In addition, the research team found no measurable impact to vehicle drivability or maintenance in conventional internal combustion engines.

The data illustrates the potential benefits of E20 as a tool in reducing overall vehicle emissions at a time when many states and the U.S. Department of Transportation are considering policies that would increase the ethanol percentage in standard gasoline.

“Currently, numerous commercially available gasoline brands contain 10 percent ethanol,” notes Brian Hilton, senior staff engineer at the center, a component of the RIT’s Golisano Institute for Sustainability, and part of the research team. “There have been concerns raised that any increase in blend would negatively impact standard internal combustion engines, however our data shows that vehicle performance remained constant, while carbon monoxide and hydrocarbon emissions were decreased even over E10 blends.”

The RIT team, which was also led by Brian Duddy, a senior program manager at the Center for Integrated Manufacturing Studies, worked with the County of Monroe, N.Y., to test the use of E20 in 10 older gasoline vehicles that were not designed for ethanol fuel mixtures. The study utilized service vehicles used by the county, which logged over 100,000 miles on E20 fuel and were analyzed periodically both for emissions and overall wear and tear on the vehicle. The fleet showed an average emissions reduction for carbon monoxide of 23 percent as well as a 13 percent reduction for hydrocarbon emissions, compared to conventional gasoline, with no measurable stress on vehicle operation or mechanics.

The study results were published in the Journal of Automobile Engineering and are being used by the Environmental Protection Agency to promote the federal Renewable Fuel Standard program. This effort has mandated an increase in the volume of renewable fuel required to be blended into transportation fuel from 9 billion gallons in 2008 to 36 billion gallons by 2022. The RIT team is continuing to work with Monroe County to convert their entire conventional gasoline fleet to E20 and will provide additional analysis on the impact of ethanol on long-term vehicle durability.

William Dube | EurekAlert!
Further information:
http://www.rit.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>