Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Dynamic Mapping Reveal Clues about Flu Seasonality?

10.09.2012
Influenza outbreaks in the United States typically begin with the arrival of cold weather and then spread in seasonal waves across geographic zones. But the question of why epidemics can vary from one season to the next has baffled scientists.

In a paper titled "Deviations in Influenza Seasonality: Odd Coincidence or Obscure Consequence," Elena Naumova, Ph.D., professor of civil and environmental engineering at Tufts School of Engineering, and collaborators from the U.S. and India suggest that the search for answers has been thwarted, in part, by the lack of standardized research methods.

This paper builds on Naumova's previous work in which she suggests a role for dynamic mapping in epidemiological research. Here, the team concludes that newly emerging technologies like dynamic mapping can be used in concert with traditional approaches, which Naumova describes as "fraught with problems." The paper was published in advance of print in Clinical Microbiology and Infection.

Naumova points out several of these problems. Data collection methods are not uniform. Researchers use ambiguous terminology and definitions. Research results are not presented in a uniform manner. "This produces volumes of information—or noise—that is prone to substantial measurement error and uncertainty that potentially obscures the causes behind seasonality rather than illuminating them," she says.

Another way influenza research falls short is that it doesn't take into account the behavior of the disease as it changes across time and geography. Using dynamic mapping as a tool, Naumova, the paper's senior author, and her team analyzed hospitalization records for adults age 65 and over from across the United States during individual flu seasons in 1991, 1997, 1999, and 2003.

The data, provided by the Centers for Medicare and Medicaid Services, were superimposed onto national maps showing average weekly temperatures. The data were then transformed into an interactive movie from which researchers could view data, including origin and intensity of the outbreak, as they appeared over time. Each season exhibited variations in disease patterns.

For example, the 1991 outbreak originated in the Alabama-Louisiana region and then spread north. By contrast, the 1997 the epidemic started in central Tennessee. The 1999 epidemic started in western Minnesota while the 2003 epidemic spread from the gulf region of Texas and Louisiana, according to Naumova. Three of the epidemics peaked in the first week of January while a fourth peaked in the last week of December. Nationally, the average peak occurred during the third week of January.

Naumova points out that the four seasons reveal the diversity exhibited by seasonal outbreaks. "In these years we see that the outbreaks points of origin shifted, as did its geographic spread," she says.

Naumova's ongoing research involves developing mathematical models for analysis of large databases to study infectious diseases and exposure assessment. In an earlier study, researchers analyzed a larger data set from 1991 to 2004. They found that over the 13 seasons, seasonal flu outbreaks generally peaked earliest in the west and spread east.

While mapping reveals variations in peak timing, intensity, and geography, the factors that influence these parameters are unknown and require further investigation. In the larger picture, Naumova says dynamic mapping could potentially help fill a gap in influenza research.

"It would help give us insight into what kinds of questions to ask. This can lead to a framework from which we are able to develop new research questions," says Naumova, who adds that mapping is only one part of the puzzle. "We also must establish methodologies that use science-based definitions, reliable data and standard methods for presenting data and assessing statistics."

Co-authors include Mahesh Moorthy and Asha Abraham, the department of clinical virology at Christian Medical College in Vellore, India; Denise Castronovo, Mapping Sustainability, LLC; Sanjib Bhattacharyya and Steve Gradus, the City of Milwaukee Health Department; Jack Gorski and Yuri N. Naumov, the Blood Center of Wisconsin; and Nina Fefferman, department of ecology, evolution, and natural resources at Rutgers University and Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers.

This study was supported by funding from the National Institutes of Health.

Published online: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-0691.2012.03959.x/abstract

###

Tufts University School of Engineering Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering’s mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>