Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duffy-negative blood types no longer protected from P. Vivax malaria

16.03.2010
Study proves blood-stage infection due to population mixing and disease evolution

In a paradigm changing discovery, Plasmodium vivax (P. vivax) malaria has been identified in a population historically thought to be resistant to the disease, those who do not express the Duffy blood group protein on their red blood cells, according to researchers from Case Western Reserve University School of Medicine, Pasteur Institute, and the Madagascar Ministry of Health.

In a study of more than 600 individuals from eight communities covering the main malaria transmission areas of Madagascar, the researchers found that 10 percent of people experiencing clinical malaria were Duffy-negative and infected with P. vivax. These findings were published in an upcoming issue of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Since the early 1920s, it has been widely accepted that people of African ancestry are resistant to P. vivax blood-stage infection and clinical malaria. The Duffy-negative blood group, one of the more than 30 blood types, is predominant in most African ethnic groups. In recent years, researchers have begun to suspect that P. vivax, the world's most abundant malaria parasite, had made its way into the blood of Duffy-negative people, but until now, confirming evidence that the parasite had entered the red blood cells remained elusive.

The Case Western Reserve-Pasteur Institute team has documented their novel discovery with the first photographic evidence of the parasite's presence within red blood cells of many Duffy-negative people experiencing malarial illness. It is understood that those with this blood type, can have P. vivax living dormant in their liver cells where it does not make people sick. What has distinguished Duffy-negatives from all others was that the malaria parasite was unable to cross the threshold from liver cells to blood cells. The lynchpin responsible for resistance to vivax malaria has been that when the Duffy antigen is missing the parasite is not able to invade the red blood cell and cause disease.

"The study confirms that P. vivax is not dependent on the Duffy antigen for establishing blood-stage infection and disease in Madagascar. Evolution of new parasite strains, infiltrating a new group of people who are Duffy-negative, seems to be occurring within a population of people from different ethnic backgrounds," says Peter A. Zimmerman, Ph.D., the study's senior author and Professor of International Health, Genetics and Biology in the Center for Global Health and Diseases at Case Western Reserve University School of Medicine. "These findings will have a major impact on efforts to eliminate malaria worldwide, particularly in large regions of Duffy-negative west, central and southern Africa."

The study's findings suggest that population mixing on the island of Madagascar increases the Duffy-negative's susceptibility to P. vivax. With ancestors of both Duffy-negative Africa and Duffy-positive Southeast Asia in Madagascar, P. vivax has steady opportunity to attempt infection of Duffy-negative red blood cells. Through these opportunities, and the lifecycle necessity of blood-stage infection, P. vivax strains in Madagascar may be optimizing an otherwise cryptic invasion pathway.

Malaria, one of the world's "big three" diseases, is a major health problem. Forty percent of the world's 6.5 billion people live in areas where malaria transmission occurs. As many as three million people are diagnosed with new cases of P. vivax malaria each year, which is one of the four types of malaria. "It will be imperative for the global health community to find ways to prevent the spread of these new strains of P. vivax to the continent of Africa," says Dr. Zimmerman.

In Madagascar, malaria is endemic to more than three-quarters of the island. With almost one million clinical cases reported each year, this disease is a major public health problem. Major efforts to fight malaria are focused on Plasmodium falciparum. While P. vivax is the second most prevalent malaria parasite, public health data on it is limited. "We did not anticipate such a widespread phenomenon when we started the study with our Malagasy colleagues from the National Malaria Control Programme. Finding vivax malaria in a group previously considered resistant adds yet another public health threat to this population. It was bad news. We need to understand how the parasite has evolved in Madagascar to spread disease to a broader population," says Dr. Didier Ménard from Pasteur Institute.

Dr. Odile Mercereau-Puijalon, Head of the Parasite Molecular Immunology Unit at the Pasteur Institute, commented, "The large numbers of P. vivax parasitized red blood cells in Duffy-negative patients shows an efficient invasion process in cells considered to be resistant to infection. This capacity is clearly not restricted to a single P. vivax strain in Madagascar and is a widespread phenomenon across the island. Our findings illustrate the extraordinary capacity of malaria parasites to overcome barriers. This calls for increased vigilance in the efforts to control malaria."

With these novel findings, the Case Western Reserve and Pasteur Institute researchers will examine how the malaria parasites successfully invade the cells and determine the molecular receptor involved in this process. Through their future studies the team hopes to determine how these parasites invade red blood cells and contribute to development of an effective vaccine against vivax malaria.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News &World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu
http://casemed.case.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>