Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual approach gives a more accurate picture of the autistic brain

14.04.2010
A new study, the first of its kind, combines two complementary analytical brain imaging techniques, to provide a more comprehensive and accurate picture of the neuroanatomy of the autistic brain.

The study, published in the April issue of neuroimaging journal Human Brain Mapping, was conducted by researchers at The Montreal Neurological Institute and Hospital – The Neuro, McGill University and the Université de Montréal. The findings provide critical insight into autism and possible markers for the disease for use in early therapy and therapeutic strategies.

Autism is a complex spectrum disorder thought to affect 1 in 166 people. Autistic individuals have difficulties with social interaction, communication and repetitive behaviours, which can lead to isolation and emotional problems. They may also have enhanced abilities particularly in auditory and visual perception.

Although structural brain differences have been reported in autism, the reports are inconsistent. The Neuro research team's objective therefore was to investigate neuroanatomical differences using a dual-analytic approach, combining cortical thickness analysis (CT) and voxel-based morphometry (VBM) together for the first time in the same participants. The team studied a group of young adults with autism of average intelligence and similar language ability relative to closely matched typically developing controls.

"The findings are significant from a functional perspective because the anatomical differences are found in brain regions known to play a functional role in the core features of autism such as social communication and repetitive behaviours, says Dr. Krista Hyde, research fellow with Dr. Alan Evans at The Neuro, and lead investigator in the study. "This is the first step to looking for clues or markers that would help us correlate structural differences with functional and behavioural characteristics."

The advantage in analyzing brain anatomy using CT and VBM is the complementary nature of the two methods, which in combination provide a direct measure of cortical grey matter, regions of the brain that consist primarily of nerve cell bodies. The combined method also provides a measure of subcortical grey matter as well as white matter, regions of the brain composed mainly of nerve cell fibres which have myelin sheaths, the protective covering that insulates and supports nerve cells. "The converging results found from CT and VBM analysis, allows us to make more confident interpretations about the structural brain differences found in autism," adds Dr. Hyde.

Regional differences in grey matter were found in socially-relevant and communication-related brain areas, as well as in areas implicated in repetitive behaviours and those found to play a role in empathic behavior. The study also identifies grey matter increases in autism in the visual cortex and for the first time, in the primary auditory cortex. "We believe that the visual and auditory cortical thickness increases may be related to enhanced visual and auditory perception in autism."

"These new results are extremely important because they offer a more accurate picture of the autistic brain, helping researchers improve early autism treatment strategies," says Dr. Anthony Phillips, Scientific Director of the Canadian Institutes of Health Research (CIHR) Institute of Neurosciences, Mental Health and Addiction. "Autism rates have been rising steadily in Canada, so CIHR is proud to support researchers who devote their time to look into this neurological condition."

The study's findings provide vital insight into autism by identifying structural differences in functionally relevant areas of the brain in a group of individuals with autism using a dual analytic approach for the first time.

The study was funded by The Canadian Institutes of Health Research.

About the Montreal Neurological Institute and Hospital:

The Montreal Neurological Institute and Hospital - The Neuro is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.mni.mcgill.ca

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>