Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs to inhibit blood vessel growth show promise in rat model of deadly brain tumor

26.08.2008
Glioblastoma tumor size reduced by 50 to 70 percent

In a landmark study, Medical College of Wisconsin researchers in Milwaukee report that drugs used to inhibit a specific fatty acid in rat brains with glioblastoma-like tumors not only reduced new blood vessel growth and tumor size dramatically, but also prolonged survival. The study is the featured cover story of the August, 2008 Journal of Cerebral Blood Flow & Metabolism.

"These rat model tumors were developed from human glioblastoma tumor cells and closely mimic human tumors in growth patterns and response to therapy," says lead researcher David Harder, Ph.D., Kohler Co. Professor in Cardiovascular Research. "The concept of targeting blood vessels that feed tumors as an approach to limit tumor growth is not a novel idea," he says. "However, blocking the specific fatty acid described in this study is novel, and holds great promise for use in humans."

Malignant gliomas are very aggressive tumors of the central nervous system, resistant to chemotherapy and radiation, and account for about half of the 350,000 brain tumors currently diagnosed in the U.S.

Dr. Harder is also professor of physiology, associate dean for research and director of the Medical College's Cardiovascular Research Center. He believes that further studies, demonstrating that such drugs work in humans may reveal that higher concentrations or infusions over longer periods of time may be more effective than the results reported in this study.

"If survival time could be extended, with a combination of surgical therapy and infusion with similar drugs, this could be a significant treatment option," he says.

Earlier studies from the Harder lab have shown that specific fatty acids generated in the brain induce new blood vessel growth known as angiogenesis. Harder and colleagues designed these studies on the premise that all cells, including cancer cells, require oxygen for growth and that blocking formation of specific fatty acids would decrease blood vessel growth and oxygen supply to tumors, retarding their growth.

In their current study, Dr. Harder and colleagues compared three sets of rats with induced tumors, two groups using either one of two inhibitor drugs, 17-ODYA or miconazole, to block the fatty acid CYP epoxygenase and a control group, receiving a placebo. Drugs were infused directly into the tumors over an extended period of time, using specially-designed miniature osmotic pumps and a very small burr hole in the skull. The pumps, similar to those used in humans, were buried just beneath the skin through a tiny incision.

Compared to the control group, tumor size in the drug-infused groups was reduced by an average 50 to 70 percent, and survival time increased by five to seven days, equivalent to three to four months in terms of human survival.

"These pumps have been used in humans for other diseases and can be designed for delivery of these drugs as well," says Dr. Harder. "We believe they can be used to deliver drugs to block angiogenesis in complex human tumors such as glioblastomas."

Eileen La Susa | EurekAlert!
Further information:
http://www.mcw.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>