Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs to inhibit blood vessel growth show promise in rat model of deadly brain tumor

26.08.2008
Glioblastoma tumor size reduced by 50 to 70 percent

In a landmark study, Medical College of Wisconsin researchers in Milwaukee report that drugs used to inhibit a specific fatty acid in rat brains with glioblastoma-like tumors not only reduced new blood vessel growth and tumor size dramatically, but also prolonged survival. The study is the featured cover story of the August, 2008 Journal of Cerebral Blood Flow & Metabolism.

"These rat model tumors were developed from human glioblastoma tumor cells and closely mimic human tumors in growth patterns and response to therapy," says lead researcher David Harder, Ph.D., Kohler Co. Professor in Cardiovascular Research. "The concept of targeting blood vessels that feed tumors as an approach to limit tumor growth is not a novel idea," he says. "However, blocking the specific fatty acid described in this study is novel, and holds great promise for use in humans."

Malignant gliomas are very aggressive tumors of the central nervous system, resistant to chemotherapy and radiation, and account for about half of the 350,000 brain tumors currently diagnosed in the U.S.

Dr. Harder is also professor of physiology, associate dean for research and director of the Medical College's Cardiovascular Research Center. He believes that further studies, demonstrating that such drugs work in humans may reveal that higher concentrations or infusions over longer periods of time may be more effective than the results reported in this study.

"If survival time could be extended, with a combination of surgical therapy and infusion with similar drugs, this could be a significant treatment option," he says.

Earlier studies from the Harder lab have shown that specific fatty acids generated in the brain induce new blood vessel growth known as angiogenesis. Harder and colleagues designed these studies on the premise that all cells, including cancer cells, require oxygen for growth and that blocking formation of specific fatty acids would decrease blood vessel growth and oxygen supply to tumors, retarding their growth.

In their current study, Dr. Harder and colleagues compared three sets of rats with induced tumors, two groups using either one of two inhibitor drugs, 17-ODYA or miconazole, to block the fatty acid CYP epoxygenase and a control group, receiving a placebo. Drugs were infused directly into the tumors over an extended period of time, using specially-designed miniature osmotic pumps and a very small burr hole in the skull. The pumps, similar to those used in humans, were buried just beneath the skin through a tiny incision.

Compared to the control group, tumor size in the drug-infused groups was reduced by an average 50 to 70 percent, and survival time increased by five to seven days, equivalent to three to four months in terms of human survival.

"These pumps have been used in humans for other diseases and can be designed for delivery of these drugs as well," says Dr. Harder. "We believe they can be used to deliver drugs to block angiogenesis in complex human tumors such as glioblastomas."

Eileen La Susa | EurekAlert!
Further information:
http://www.mcw.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>