Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs to inhibit blood vessel growth show promise in rat model of deadly brain tumor

26.08.2008
Glioblastoma tumor size reduced by 50 to 70 percent

In a landmark study, Medical College of Wisconsin researchers in Milwaukee report that drugs used to inhibit a specific fatty acid in rat brains with glioblastoma-like tumors not only reduced new blood vessel growth and tumor size dramatically, but also prolonged survival. The study is the featured cover story of the August, 2008 Journal of Cerebral Blood Flow & Metabolism.

"These rat model tumors were developed from human glioblastoma tumor cells and closely mimic human tumors in growth patterns and response to therapy," says lead researcher David Harder, Ph.D., Kohler Co. Professor in Cardiovascular Research. "The concept of targeting blood vessels that feed tumors as an approach to limit tumor growth is not a novel idea," he says. "However, blocking the specific fatty acid described in this study is novel, and holds great promise for use in humans."

Malignant gliomas are very aggressive tumors of the central nervous system, resistant to chemotherapy and radiation, and account for about half of the 350,000 brain tumors currently diagnosed in the U.S.

Dr. Harder is also professor of physiology, associate dean for research and director of the Medical College's Cardiovascular Research Center. He believes that further studies, demonstrating that such drugs work in humans may reveal that higher concentrations or infusions over longer periods of time may be more effective than the results reported in this study.

"If survival time could be extended, with a combination of surgical therapy and infusion with similar drugs, this could be a significant treatment option," he says.

Earlier studies from the Harder lab have shown that specific fatty acids generated in the brain induce new blood vessel growth known as angiogenesis. Harder and colleagues designed these studies on the premise that all cells, including cancer cells, require oxygen for growth and that blocking formation of specific fatty acids would decrease blood vessel growth and oxygen supply to tumors, retarding their growth.

In their current study, Dr. Harder and colleagues compared three sets of rats with induced tumors, two groups using either one of two inhibitor drugs, 17-ODYA or miconazole, to block the fatty acid CYP epoxygenase and a control group, receiving a placebo. Drugs were infused directly into the tumors over an extended period of time, using specially-designed miniature osmotic pumps and a very small burr hole in the skull. The pumps, similar to those used in humans, were buried just beneath the skin through a tiny incision.

Compared to the control group, tumor size in the drug-infused groups was reduced by an average 50 to 70 percent, and survival time increased by five to seven days, equivalent to three to four months in terms of human survival.

"These pumps have been used in humans for other diseases and can be designed for delivery of these drugs as well," says Dr. Harder. "We believe they can be used to deliver drugs to block angiogenesis in complex human tumors such as glioblastomas."

Eileen La Susa | EurekAlert!
Further information:
http://www.mcw.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>