Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New drug successfully halts fibrosis in animal model of liver disease

A study published in the online journal Hepatology reports a potential new NADPH oxidase (NOX) inhibitor therapy for liver fibrosis, a scarring process associated with chronic liver disease that can lead to loss of liver function.

"While numerous studies have now demonstrated that advanced liver fibrosis in patients and in experimental rodent models is reversible, there is currently no effective therapy for patients," said principal investigator David A. Brenner, MD, vice chancellor for Health Sciences and dean of the School of Medicine at the University of California, San Diego. "This new study provides important validation of the role of NOX in liver fibrosis, and suggests that a NOX inhibitor could provide an effective treatment for this devastating disease."

Most chronic liver diseases are associated with progressive fibrosis, which is triggered by the loss of liver cells and the activation of inadequate wound healing pathways. In addition, oxidative stress – which results from an inappropriate balance between the production and clearance of highly reactive molecules involved in cell signaling called reactive oxidative species (ROS) – leads to aberrant tissue repair in the liver.

When the liver is injured – for example, through hepatitis or alcohol abuse –HSCs are activated to become myofibroblasts, cells which play a crucial role in wound healing and the body's response to inflammation by recruiting immune cells called macrophages to the injury site. This process, triggered by intracellular signalling pathways involving NOX, can result in an abundance of scarring and eventually result in the loss of organ function.

By inhibiting NOX, the researchers theorized that myofibroblast activation and macrophage recruitment could be interrupted, preventing further fibrosis and potentially allowing regression of established fibrosis.

They assessed the effectiveness of treatment with GKT137831 – a NOX1/4 inhibitor developed by Genkyotex SA of Geneva, Switzerland – in mouse models, and found that treatment with this NOX inhibitor suppressed ROS production, as well as NOX and fibrotic gene expression.

"These data highlight the excellent pharmacological properties of GKT137831 and the broad potential for its use in fibrotic diseases,'' said Patrick Page, chief development officer at Genkyotex and contributor to the study.

According to Brenner, the next steps include a clinical trial with this drug in patients with liver fibrosis.

Additional contributors include Tomonori Aoyama, UC San Diego and Juntendo University School of Medicine, Tokyo; Yong-Han Paik, Yonsei University College of Medicine, Seoul, Korea; Sumio Watanabe, Juntendo University; Benoît Laleu, Francesca Gaggini, Laetitia Fioraso-Cartier, Sophie Molangpo, Freddy Heitz, Cédric Merlot and Cédric Szyndralewiez, GenKyoTex SA, Geneva.

The study was funded in part by grants 1 R24 DK090962, 5 P50 AA011999 and 5 R01 GM041804 from the National Institutes of Health and by the American Liver Foundation.

Debra Kain | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>