Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug shows potential for treatment-resistant leukemia

12.04.2011
A study from Tufts Medical Center researchers published today finds that a novel drug shows promise for treating leukemia patients who have few other options because their disease has developed resistance to standard treatment.

Appearing in the journal Cancer Cell, the study is the first published report showing that the drug, DCC-2036, fights chronic myeloid leukemia (CML) in a mouse model of the disease and is effective against human leukemia cells.

"These findings demonstrate that DCC-2036 is an excellent candidate for clinical development as a treatment for resistant CML. Not all drugs that work in a test tube will actually be effective in a living organism such as our mouse model," said Richard Van Etten, MD, PhD, Director of Tuft's Medical Center's Cancer Center and senior author of the study.

Other authors of the study are scientists with Deciphera Pharmaceuticals LLC of Lawrence, Kansas, and Emerald Biostructures of Bainbridge Island, WA.

DCC-2036 is a tyrosine kinase inhibitor (TKI), a class of drugs that block the action of an abnormal enzyme, BCR-ABL1, that sends chemical messenges that tell CML cells to grow. The development of TKI drugs such as imatinib (Gleevec®) dramatically improved the prognosis for patients with CML, which strikes about 5,000 new patients each year in the United States. But about a third of patients will eventually relapse, principally because of mutations that render BCR-ABL1 resistant to the TKI. Such patients are left with few treatment options other than bone marrow transplantation.

The study showed that in human cells taken from treatment-resistant patients who had received the new drug, DCC-2036 tamped down the mutant enzyme that led to their relapse. The study also found that the drug killed malignant cells and prolonged survival in a mouse model of CML developed by Van Etten's team.

Deciphera Pharmaceuticals, LLC used crystal structures of BCR-ABL1 to custom-design the novel drug to inhibit the mutant enzyme that leads to treatment resistance in CML patients. "The study illustrates the power of designing drugs based upon structures of the target and initial testing of these drugs in mouse models before proceeding to the clinic. This type of targeted design is a paradigm for how cancer treatments will be developed in the 21st century," Van Etten said.

DCC-2036 is currently being tested in a phase 1 clinical trial in patients who have failed therapy with two other TKIs. The trial is actively enrolling patients at Tufts Medical Center, MD Anderson Cancer Center, and University of Michigan Cancer Center.

For more information about the trial, please contact the Neely Center for Clinical Cancer Research at Tufts Medical Center at 617-636-5558, or visit http://clinicaltrials.gov/ct2/show/NCT00827138.

About Tufts Medical Center:

Tufts Medical Center is an exceptional, not-for-profit, 415-bed academic medical center that is home to both a full-service hospital for adults and Floating Hospital for Children. Conveniently located in downtown Boston, the Medical Center is the principal teaching hospital for Tufts University School of Medicine. Floating Hospital for Children is the full-service children's hospital of Tufts Medical Center and the principal pediatric teaching hospital of Tufts University School of Medicine. For more information, please visit www.tuftsmedicalcenter.org.

Julie Jette | EurekAlert!
Further information:
http://www.tuftsmedicalcenter.org

Further reports about: BCR-ABL1 CML Cancer Floating LLC Medical Wellness TKI crystal structure human cell mouse model

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>