Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drug helps purge hidden HIV virus, study shows

A team of researchers at the University of North Carolina at Chapel Hill have successfully flushed latent HIV infection from hiding, with a drug used to treat certain types of lymphoma.

Tackling latent HIV in the immune system is critical to finding a cure for AIDS.

The results were presented today at the 19th Conference on Retroviruses and Opportunistic Infections in Seattle, Washington.

While current antiretroviral therapies can very effectively control virus levels, they can never fully eliminate the virus from the cells and tissues it has infected.

"Lifelong use of antiretroviral therapy is problematic for many reasons, not least among them are drug resistance, side effects, and cost," said David Margolis, MD, professor of medicine, microbiology and immunology, and epidemiology at the University of North Carolina at Chapel Hill. "We need to employ better long-term strategies, including a cure."

Margolis' new study is the first to demonstrate that the biological mechanism that keeps the HIV virus hidden and unreachable by current antiviral therapies can be targeted and interrupted in humans, providing new hope for a strategy to eradicate HIV completely.

In a clinical trial, six HIV-infected men who were medically stable on anti-AIDS drugs, received vorinostat, an oncology drug. Recent studies by Margolis and others have shown that vorinostat also attacks the enzymes that keep HIV hiding in certain CD4+ T cells, specialized immune system cells that the virus uses to replicate. Within hours of receiving the vorinostat, all six patients had a significant increase in HIV RNA in these cells, evidence that the virus was being forced out of its hiding place.

"This proves for the first time that there are ways to specifically treat viral latency, the first step towards curing HIV infection," said Margolis, who led the study. "It shows that this class of drugs, HDAC inhibitors, can attack persistent virus. Vorinostat may not be the magic bullet, but this success shows us a new way to test drugs to target latency, and suggests that we can build a path that may lead to a cure."

The research conducted is part of a UNC-led consortium, the Collaboratory of AIDS Researchers for Eradication (CARE), funded by the National Institute of Allergy and Infectious Diseases. The consortium is administered by the North Carolina Translational and Clinical Sciences (NC TraCS) Institute at UNC, one of 60 medical research institutions in the US working to improve biomedical research through the NIH Clinical and Translational Science Awards (CTSA) program.

Other UNC authors on the paper include Nanci Archin, PhD, Shailesh Choudary, PhD, Joann Kuruc, MSN, and Joseph Eron, MD of the medical school; Angela Kashuba, PharmD of the Eshelman School of Pharmacy; and Michael Hudgens, PhD, of the Gillings School of Global Public Health.

Funding for this research was provided by the National Institutes of Health, Merck & Co., and the James B. Pendleton Charitable Trust.

Lisa Chensvold | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>