Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-embedded microparticles bolster heart function in animal studies

21.10.2008
Researchers at Emory University and Georgia Institute of Technology have developed tiny polymer beads that can slowly release anti-inflammatory drugs and break down into non-toxic components.

When injected into rats' hearts after a simulated heart attack, the drug-embedded "microparticles" reduce inflammation and scarring, the researchers found. Injecting the particles could cut the area of scar tissue formed after the heart attack in half and boost the ability of the heart to pump blood by 10 percent weeks later.

The results are published online this week and are scheduled for publication in the Oct/Nov issue of Nature Materials.

Doctors believe that certain anti-inflammatory drugs, if delivered directly into the heart after a heart attack, could prevent permanent damage and reduce the probability of heart failure later in life.

Fulfilling this idea -- getting drugs to the right place at the right time -- is more challenging than simply swallowing an aspirin, says senior author Michael Davis, PhD, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

"If you look at previous studies to see what it would take to get enough of these drugs into the heart, they did things like direct injections twice a day," he says. "And there are clear toxicity issues if the whole body is exposed to the drug."

As an alternative, Davis and graduate student Jay Sy, the first author of the paper, turned to microscopic particles made of a material called polyketals, developed by co-author Niren Murthy, PhD, assistant professor of biomedical engineering.

The microparticles break down over a few weeks in the body, releasing the experimental drug SB239063. This drug inhibits an enzyme, MAP kinase, which is important during the damaging inflammation that occurs after a heart attack.

Davis says the drug gradually leaches out of the polyketal particles – half is gone after a week of just sitting around in warm water. In addition, the microparticles are broken down by white blood cells called macrophages.

"These are actually cells we're trying to reach with the drug, because they're involved in the inflammatory response in the heart," he says. "The macrophages can surround and eat the particles, or fuse together if the particles are too big."

Davis says polyketals have an advantage over other biodegradable polymers, in that they break down into neutral, excretable compounds that aren't themselves inflammatory.

Polyesters such as PLGA (polylactic-co-glycolic acid) are approved for use in sutures and grafts. However, when they are made into particles small enough to be broken down in the body, polyesters cause inflammation – exactly what the drugs are supposed to stop, he says.

When the particles were injected into rats' hearts, the researchers could see an inhibition of the MAP kinase enzyme lasting for a week. However, the effect on heart function was greater after 21 days. Davis says this result suggests that the main way the particles helped the heart was to prevent the scarring that sets in after the initial tissue damage of a heart attack.

He and Murthy are exploring polyketal particles as delivery vehicles for drugs or proteins in several organs: heart, liver, lungs and spinal cord.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>