Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drug-embedded microparticles bolster heart function in animal studies

Researchers at Emory University and Georgia Institute of Technology have developed tiny polymer beads that can slowly release anti-inflammatory drugs and break down into non-toxic components.

When injected into rats' hearts after a simulated heart attack, the drug-embedded "microparticles" reduce inflammation and scarring, the researchers found. Injecting the particles could cut the area of scar tissue formed after the heart attack in half and boost the ability of the heart to pump blood by 10 percent weeks later.

The results are published online this week and are scheduled for publication in the Oct/Nov issue of Nature Materials.

Doctors believe that certain anti-inflammatory drugs, if delivered directly into the heart after a heart attack, could prevent permanent damage and reduce the probability of heart failure later in life.

Fulfilling this idea -- getting drugs to the right place at the right time -- is more challenging than simply swallowing an aspirin, says senior author Michael Davis, PhD, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

"If you look at previous studies to see what it would take to get enough of these drugs into the heart, they did things like direct injections twice a day," he says. "And there are clear toxicity issues if the whole body is exposed to the drug."

As an alternative, Davis and graduate student Jay Sy, the first author of the paper, turned to microscopic particles made of a material called polyketals, developed by co-author Niren Murthy, PhD, assistant professor of biomedical engineering.

The microparticles break down over a few weeks in the body, releasing the experimental drug SB239063. This drug inhibits an enzyme, MAP kinase, which is important during the damaging inflammation that occurs after a heart attack.

Davis says the drug gradually leaches out of the polyketal particles – half is gone after a week of just sitting around in warm water. In addition, the microparticles are broken down by white blood cells called macrophages.

"These are actually cells we're trying to reach with the drug, because they're involved in the inflammatory response in the heart," he says. "The macrophages can surround and eat the particles, or fuse together if the particles are too big."

Davis says polyketals have an advantage over other biodegradable polymers, in that they break down into neutral, excretable compounds that aren't themselves inflammatory.

Polyesters such as PLGA (polylactic-co-glycolic acid) are approved for use in sutures and grafts. However, when they are made into particles small enough to be broken down in the body, polyesters cause inflammation – exactly what the drugs are supposed to stop, he says.

When the particles were injected into rats' hearts, the researchers could see an inhibition of the MAP kinase enzyme lasting for a week. However, the effect on heart function was greater after 21 days. Davis says this result suggests that the main way the particles helped the heart was to prevent the scarring that sets in after the initial tissue damage of a heart attack.

He and Murthy are exploring polyketal particles as delivery vehicles for drugs or proteins in several organs: heart, liver, lungs and spinal cord.

Holly Korschun | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>