Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-embedded microparticles bolster heart function in animal studies

21.10.2008
Researchers at Emory University and Georgia Institute of Technology have developed tiny polymer beads that can slowly release anti-inflammatory drugs and break down into non-toxic components.

When injected into rats' hearts after a simulated heart attack, the drug-embedded "microparticles" reduce inflammation and scarring, the researchers found. Injecting the particles could cut the area of scar tissue formed after the heart attack in half and boost the ability of the heart to pump blood by 10 percent weeks later.

The results are published online this week and are scheduled for publication in the Oct/Nov issue of Nature Materials.

Doctors believe that certain anti-inflammatory drugs, if delivered directly into the heart after a heart attack, could prevent permanent damage and reduce the probability of heart failure later in life.

Fulfilling this idea -- getting drugs to the right place at the right time -- is more challenging than simply swallowing an aspirin, says senior author Michael Davis, PhD, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

"If you look at previous studies to see what it would take to get enough of these drugs into the heart, they did things like direct injections twice a day," he says. "And there are clear toxicity issues if the whole body is exposed to the drug."

As an alternative, Davis and graduate student Jay Sy, the first author of the paper, turned to microscopic particles made of a material called polyketals, developed by co-author Niren Murthy, PhD, assistant professor of biomedical engineering.

The microparticles break down over a few weeks in the body, releasing the experimental drug SB239063. This drug inhibits an enzyme, MAP kinase, which is important during the damaging inflammation that occurs after a heart attack.

Davis says the drug gradually leaches out of the polyketal particles – half is gone after a week of just sitting around in warm water. In addition, the microparticles are broken down by white blood cells called macrophages.

"These are actually cells we're trying to reach with the drug, because they're involved in the inflammatory response in the heart," he says. "The macrophages can surround and eat the particles, or fuse together if the particles are too big."

Davis says polyketals have an advantage over other biodegradable polymers, in that they break down into neutral, excretable compounds that aren't themselves inflammatory.

Polyesters such as PLGA (polylactic-co-glycolic acid) are approved for use in sutures and grafts. However, when they are made into particles small enough to be broken down in the body, polyesters cause inflammation – exactly what the drugs are supposed to stop, he says.

When the particles were injected into rats' hearts, the researchers could see an inhibition of the MAP kinase enzyme lasting for a week. However, the effect on heart function was greater after 21 days. Davis says this result suggests that the main way the particles helped the heart was to prevent the scarring that sets in after the initial tissue damage of a heart attack.

He and Murthy are exploring polyketal particles as delivery vehicles for drugs or proteins in several organs: heart, liver, lungs and spinal cord.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>