Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-like compound stops thyroid overstimulation in early NIH studies

02.12.2010
Research may lead to better Graves' disease treatment

Researchers at the National Institutes of Health have identified a compound that prevents overproduction of thyroid hormone, a finding that brings scientists one step closer to improving treatment for Graves' disease.

In Graves' disease, the thyroid gland never stops. Thyroid-stimulating antibodies bind to receptors, activating them to keep the thyroid hormone coming and coming — like a broken traffic light stuck on green — and causing the body problems in regulating energy, controlling other hormones and maintaining cells throughout the body.

Attacking the problem at its root cause, lead researcher Susanne Neumann, Ph.D., and her colleagues at the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) have identified a chemical compound that binds to the receptors and acts as an antagonist, keeping the stimulating antibodies from their work and potentially allowing the thyroid cells to revert to normal function.

The findings, published this month in the Journal of Clinical Endocrinology and Metabolism, establish the effect of the receptor antagonist on human thyroid cells. The antagonist has not yet been tested in animals or people and still has multiple steps of toxicology and safety testing before it may be ready for human trials.

Though treatments are available for hyperthyroidism caused by Graves' disease, including surgery, radioactive iodine, and antithyroid drugs, the relapse rates for these treatments are 5 percent, 21 percent and 40 percent, respectively, and each comes with unfavorable side effects.

"Our goal is to develop an easily produced, orally administered, safe and effective drug with few to no side effects that can be used in place of some of the more invasive treatments of hyperthyroidism caused by Graves' disease," said Marvin Gershengorn, M.D., chief of the Laboratory of Endocrinology and Receptor Biology within NIDDK's intramural research program and the senior author on the paper.

Graves' disease is an autoimmune disorder, causing the body's immune system to act against the body's own cells and organs. Graves' disease typically first occurs in people under 40 and affects approximately 1 percent of the U.S. population, with women five to 10 times more likely than men to have Graves' disease.

The newly discovered compound, which is a receptor antagonist, may have the added benefit of helping those with eye problems caused by Graves' disease — called Graves' ophthalmopathy — experienced by more than 25 percent of people with the disease. Eye problems may include painful swelling in the eye sockets, double vision, tears or itchy eyes, and protruding eyes with swollen eyelids that can't be easily shut, increasing the risk for eye diseases. Because the swelling in the eyes is thought to be associated with the same overstimulation of receptors caused by the same thyroid-stimulating antibodies as in the thyroid, the potential thyroid treatment may have the added benefit of treating the eye problems as well.

The Gershengorn team is also at work on the flip side of thyroid regulation. By researching the thyroid-stimulating hormone receptor, they're hoping to use drug-like compounds to stimulate this receptor to treat people with thyroid cancer, who need more stimulation of thyroid cancer cells to increase the efficacy of iodine radiation. They've tested their discovery in mice and hope to perform pre-clinical studies and to develop human trials in the foreseeable future.

More information:

Go to www.endocrine.niddk.nih.gov/pubs/graves/ to learn more about Graves' disease.
Go to http://jcem.endojournals.org/rep.shtml/ to read the journal abstract.
Go to www.clinicaltrials.gov to learn about clinical trials.
The NIDDK, a component of the National Institutes of Health (NIH), conducts and supports research on diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition and obesity; and kidney, urologic and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe and disabling conditions affecting Americans. For more information about the NIDDK and its programs, see www.niddk.nih.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Reference:

Dr. Marvin C. Gershengorn, NIDDK Laboratory of Endocrinology and Receptor Biology, senior author on the paper, will be available to further describe the findings and their potential clinical significance.

"A New Small-Molecule Antagonist Inhibits Graves' Disease Antibody Activation on the TSH Receptor" was published online Wednesday, Dec. 1, 2010, in the Journal of Clinical Endocrinology and Metabolism.

Amy F. Reiter | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>