Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving simulation and cognitive models reveal differences between novice and experienced drivers

06.08.2013
A recent study compared the differences between novice and experienced drivers using a driving simulator and modeled the difference using computational cognitive models.

The method and results provide important cognitive-psychological bases for developing intelligent driver training and driving assistance systems.


This image shows a driving simulation (a) and a typical high-way driving scenario in China (b).

Credit: ©Science China Press

The study titled "Modeling the effect of driving experience on lane keeping performance using ACT-R cognitive architecture," authored by Shi Cao, Yulin Qin, and Mowei Shen, has been published on CHINESE SCIENCE BULLETIN, 2013.

Driving experience is a critical human factor of driving safety. In China, there are currently more than 100 million licensed drivers, about one-third of whom are novice drivers with driving experience no more than 3 years. The lack of driving experience is a potential risk factor of accidents.

From the perspective of cognitive psychology, driving is a complex task that requires seamless coordination of multiple cognitive skills including perception, decision, and memory. Analyzing the differences between novice and experienced drivers and studying the mechanisms of driving skill learning are very important and valuable for improving driver training courses and the innovation of training techniques.

Previous studies on driving skills often focused on one cognitive skill but lacked an integrated view of all necessary skills. Considering different aspects of driving skills, Cao et al. used driving simulation to directly measure driving performance (Figure 1), compared the difference between novice and experienced drivers, and quantitatively modeled the difference using computational simulation of human performance.

As the first author Shi Cao said, there were two major challenges of this study: (1) building computerized models that can simulate what happens in a driver's mind in terms of cognitive information processing and (2) figuring out which cognitive factors are different between novice and experienced drivers. Cognitive sciences have provided theories about the architecture of human mind, that is, the mind is a complex integration of different functional modules such as visual encoding, memory, and decision modules. Cognitive-architecture-based models integrate all aspects of cognition to explain how the mind works. Researchers are using such models to support the design and evaluation of complex human-machine systems.

The results from this study showed that the experienced drivers had better control of vehicle lane position than the novice drivers, which was simulated by setting a closer visual attention point for the novice drivers in the cognitive models. It indicates that novice drivers' poorer control of lane position may be due to not utilizing road information farther enough.

The authors believe that there will be more and more simulation and intelligent systems that can be used to facilitate driver training and improve driving safety. The driving simulator used in this study can also run on common personal computers that most people have today. After some configuration of road and environment scenarios, such simulators can be used to train new drivers under simulated emergencies such as tire explosion and skid. Computational models will be able to track the development of skills and intelligently determine the contents and progress of training. The authors are planning to develop such training systems in the next phase of research.

This study is supported by the National Natural Science Foundation of China (No. 31170974 and No. 31170975), Opening Foundation of the Science and Technology on Human Factors Engineering Laboratory (No.HF2011-K-03), the National Foundation for Fostering Talents of Basic Science (No. J0730753), and the Fundamental Research Funds for the Central Universities.

Cao, S., Qin, Y., and Shen, M.W. Modeling the effect of driving experience on lane keeping performance using ACT-R cognitive architecture. Chinese Science Bulletin, 2013, DOI: 10.1360/972012-1360

http://csb.scichina.com:8080/kxtb/CN/10.1360/972012-1360

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

SHEN MoWei | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>