Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving and hands-free talking lead to spike in errors

27.05.2013
Talking on a hands-free device while behind the wheel can lead to a sharp increase in errors that could imperil other drivers on the road, according to new research from the University of Alberta.

A pilot study by Yagesh Bhambhani, a professor in the Faculty of Rehabilitation Medicine, and his graduate student Mayank Rehani, showed that drivers who talk using a hands-free cellular device made significantly more driving errors—such as crossing the centre line, speeding and changing lanes without signalling—compared with just driving alone. The jump in errors also corresponded with a spike in heart rate and brain activity.

"It is commonplace knowledge, but for some reason it is not getting into the public conscience that the safest thing to do while driving is to focus on the road," said Rehani, who completed the research for his master's thesis in rehabilitation science at the U of A.

The researchers became interested in the topic in 2009 shortly after Alberta introduced legislation that banned the use of handheld cellphones while driving but not hands-free devices. In this study, they used near infrared spectroscopy to study the brain activity of 26 participants who completed a driving course using the Virage VS500M driving simulator at the Glenrose Rehabilitation Hospital.

Near infrared spectroscopy is a non-invasive optical technique that allows researchers to examine real-time changes in brain activity in the left prefrontal lobe. Participants were first tested in a control condition, using the simulator to drive in city street conditions using no telecommunications device. They were tested again while talking on a hands-free device during two-minute conversations that avoided emotionally charged topics.

The research team found there was a significant increase in brain activity while talking on a hands-free device compared with the control condition. A majority of participants showed a significant increase in oxyhemoglobin in the brain, with a simultaneous drop in deoxyhemoglobin—a sign of enhanced neuronal activation during hands-free telecommunication.

"The findings also indicated that blood flow to the brain is significantly increased during hands-free telecommunication in order to meet the oxygen demands of the neurons under the 'distracted' condition," said Bhambhani.

He added the results did not reveal a significant relationship between enhanced neuronal activation and the increase in the number of driving errors, most likely because the near infrared spectroscopy measurements were recorded from a single site, the prefrontal lobe.

The findings are considered novel on a topic that is receiving considerable attention by policy-makers globally. Rehani's contribution to the project earned him the 2013 Alberta Rehabilitation Award for Innovation in Rehabilitation (Student).

The researchers note this is a preliminary study and hope that it can be part of a larger body of literature that can help inform policy-makers about the safety implications of using hands-free devices while driving.

For Rehani, the work was part of rewarding academic journey at the U of A, which gave him opportunities to do research in a number of areas in neuroscience. He said he received outstanding support from both the faculty and colleagues at the Glenrose—including Quentin Ranson, the occupational therapist and rehabilitation technology lead who helped facilitate the simulator research.

"To have a Faculty of Rehabilitation Medicine, which is the only free-standing faculty of its kind in Western Canada, and to have a hospital like the Glenrose dedicated to rehabilitation, is amazing," he said. "Both workplaces have such a collegial environment, with quality faculty and staff who are both working toward patient betterment. These institutions connect so well, it's fantastic."

Bryan Alary | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>