Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dramatic outcomes in prostate cancer study

23.06.2009
Full details in Discovery's Edge, Mayo Clinic research publication

Two Mayo Clinic patients whose prostate cancer had been considered inoperable are now cancer free thanks in part to an experimental drug therapy that was used in combination with standardized hormone treatment and radiation therapy.

The men were participating in a clinical trial of an immunotherapeutic agent called MDX-010 or ipilimumab. In these two cases, physicians say the approach initiated the death of a majority of cancer cells and caused the tumors to shrink dramatically, allowing surgery. In both cases, the aggressive tumors had grown well beyond the prostate into the abdominal areas.

"The goal of the study was to see if we could modestly improve upon current treatments for advanced prostate cancer," says Eugene Kwon, M.D., Mayo Clinic urologist and leader of the clinical trial. "The candidates for this study were people who didn't have a lot of other options. However, we were startled to see responses that far exceeded any of our expectations."

The patients first received a type of hormone therapy called androgen ablation, which removes testosterone and usually causes some initial reduction in tumor size. Researchers then introduced a single dose of ipilimumab, an antibody, which builds on the anti-tumor action of the hormone and causes a much larger immune response, resulting in massive death of the tumor cells. Both men experienced consistent drops in their prostate specific antigen (PSA) counts over the following weeks until both were deemed eligible for surgery. Then, during surgery, came a greater surprise.

"The tumors had shrunk dramatically," says Michael Blute, M.D., Mayo urologist, co-investigator and surgeon, who operated on both men. "I had never seen anything like this before. I had a hard time finding the cancer. At one point the pathologist (who was working during surgery) asked if we were sending him samples from the same patient."

One patient underwent radiation therapy after surgery; both have resumed their regular lives. Further research is being planned to understand more about the mechanisms of the antibody and how best to use the approach in practice. The researchers, however, note the significance of their findings.

"This is one of the holy grails of prostate cancer research," says Dr. Kwon. "We've been looking for this for years."

The research was supported by the Department of Defense, The Richard M. Schulze Family Foundation, the Mayo Clinic Cancer Center and the Mayo Clinic Center for Translational Science Activities. Medarex, Inc. provided the study drug free of charge and supported safety monitoring during the protocol.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn.; Jacksonville, Fla.; and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>