Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If you don't snooze, do you lose?

11.10.2011
Wisconsin study shows wake-sleep patterns affect brain synapses during adolescence

An ongoing lack of sleep during adolescence could lead to more than dragging, foggy teens, a University of Wisconsin-Madison study suggests.

Researchers have found that short-term sleep restriction in adolescent mice prevented the balanced growth and depletion of brain synapses, connections between nerve cells where communication occurs.

"One possible implication of our study is that if you lose too much sleep during adolescence, especially chronically, there may be lasting consequences in terms of the wiring of the brain," says Dr. Chiara Cirelli, associate professor in the department of psychiatry at the School of Medicine and Public Health.

Mental illnesses such as schizophrenia tend to start during adolescence but the exact reasons remain unclear. The National Institute of Mental Health funded Cirelli's study; the findings appear in the current issue of Nature Neuroscience (Advance Online Publication).

"Adolescence is a sensitive period of development during which the brain changes dramatically," Cirelli says. "There is a massive remodeling of nerve circuits, with many new synapses formed and then eliminated."

Cirelli and colleagues wanted to see how alterations to the sleep-wake cycle affected the anatomy of the developing adolescent brain.

Their earlier molecular and electro-physiological studies showed that during sleep, synapses in adult rodents and flies become weaker and smaller, presumably preparing them for another period of wakefulness when synapses will strengthen again and become larger in response to ever-changing experiences and learning. They call this the synaptic homeostasis hypothesis of sleep.

Using a two-photon microscope, researchers indirectly followed the growth and retraction of synapses by counting dendritic spines, the elongated structures that contain synapses and thus allow brain cells to receive impulses from other brain cells. They compared adolescent mice that for eight to 10 hours were spontaneously awake, allowed to sleep or forced to stay awake.

The live images showed that being asleep or awake made a difference in the dynamic adolescent mouse brain: the overall density of dendritic spines fell during sleep and rose during spontaneous or forced wakefulness.

"These results using acute manipulations of just eight to 10 hours show that the time spent asleep or awake affects how many synapses are being formed or removed in the adolescent brain," Cirelli says. "The important next question is what happens with chronic sleep restriction, a condition that many adolescents are often experiencing."

The experiments are under way, but Cirelli can't predict the outcome. "It could be that the changes are benign, temporary and reversible," she says, "or there could be lasting consequences for brain maturation and functioning."

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>