Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If you don't snooze, do you lose?

11.10.2011
Wisconsin study shows wake-sleep patterns affect brain synapses during adolescence

An ongoing lack of sleep during adolescence could lead to more than dragging, foggy teens, a University of Wisconsin-Madison study suggests.

Researchers have found that short-term sleep restriction in adolescent mice prevented the balanced growth and depletion of brain synapses, connections between nerve cells where communication occurs.

"One possible implication of our study is that if you lose too much sleep during adolescence, especially chronically, there may be lasting consequences in terms of the wiring of the brain," says Dr. Chiara Cirelli, associate professor in the department of psychiatry at the School of Medicine and Public Health.

Mental illnesses such as schizophrenia tend to start during adolescence but the exact reasons remain unclear. The National Institute of Mental Health funded Cirelli's study; the findings appear in the current issue of Nature Neuroscience (Advance Online Publication).

"Adolescence is a sensitive period of development during which the brain changes dramatically," Cirelli says. "There is a massive remodeling of nerve circuits, with many new synapses formed and then eliminated."

Cirelli and colleagues wanted to see how alterations to the sleep-wake cycle affected the anatomy of the developing adolescent brain.

Their earlier molecular and electro-physiological studies showed that during sleep, synapses in adult rodents and flies become weaker and smaller, presumably preparing them for another period of wakefulness when synapses will strengthen again and become larger in response to ever-changing experiences and learning. They call this the synaptic homeostasis hypothesis of sleep.

Using a two-photon microscope, researchers indirectly followed the growth and retraction of synapses by counting dendritic spines, the elongated structures that contain synapses and thus allow brain cells to receive impulses from other brain cells. They compared adolescent mice that for eight to 10 hours were spontaneously awake, allowed to sleep or forced to stay awake.

The live images showed that being asleep or awake made a difference in the dynamic adolescent mouse brain: the overall density of dendritic spines fell during sleep and rose during spontaneous or forced wakefulness.

"These results using acute manipulations of just eight to 10 hours show that the time spent asleep or awake affects how many synapses are being formed or removed in the adolescent brain," Cirelli says. "The important next question is what happens with chronic sleep restriction, a condition that many adolescents are often experiencing."

The experiments are under way, but Cirelli can't predict the outcome. "It could be that the changes are benign, temporary and reversible," she says, "or there could be lasting consequences for brain maturation and functioning."

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>