Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dodds contributes to new national study on nitrogen water pollution

21.12.2010
A Kansas State University professor is part of a national research team that discovered that streams and rivers produce three times more greenhouse gas emissions than estimated by the Intergovernmental Panel on Climate Change.

Through his work on the Konza Prairie Biological Station and other local streams, Walter Dodds, university distinguished professor of biology, helped demonstrate that nitrous oxide emissions from rivers and streams make up at least 10 percent of human-caused nitrous oxide emissions -- three times greater than current estimates by the climate change panel.

"This research deals with two important issues," Dodds said. "First, nitrous oxide is a potent greenhouse gas. Second, nitrous oxide also destroys ozone in the upper atmosphere, exposing us to more ultra violet radiation."

The research, "Nitrous oxide emission from denitrification in stream and river networks," appears in this week's Online Early Edition of the Proceedings of the National Academy of Sciences.

... more about:
»greenhouse gas »nitrous oxide

For the article, researchers from 23 institutions -- including K-State -- measured nitrous oxide production in 72 streams that drain native, urban or agricultural lands. Nine of those streams were in the Manhattan area, with three at Konza.

The level of nitrous oxide in streams and rivers is related to human activities that can release nitrogen into the environment, such as sewage runoff or crop fertilization. When this nitrogen reaches rivers and streams, it undergoes denitrification, a microbial process that converts nitrogren to nitrous oxide gas, called N2O, and an inert gas called dinitrogen, or N2.

As a greenhouse gas, nitrous oxide has global warming potential that is 300-fold greater than carbon dioxide. In the past century, concentration of atmospheric nitrous oxide has increased 20 percent, making it a strong contributor to climate change and ozone destruction.

"We show that river networks play an important role in how human nitrogen additions for crops influence the global environment," Dodds said.

The findings can lead to more effective mitigation strategies, Dodds said. Researchers suggest that nitrous oxide emissions can be reduced from river networks by changing agricultural and urban land-use practices, such as better management practices for fertilizers. By decreasing nitrogen input to watersheds, the production of nitrous oxide also diminishes.

Jake Beaulieu of the Environmental Protection Agency is the lead author of the paper, produced as part of a project headed by Patrick Mulholland of the Oak Ridge National Laboratory. From 2005 to 2007 the team received $3 million from the National Science Foundation to investigate nitrogen pollution in streams. K-State received $320,000 of the grant.

Walter Dodds | EurekAlert!
Further information:
http://www.k-state.edu

Further reports about: greenhouse gas nitrous oxide

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>