Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dodds contributes to new national study on nitrogen water pollution

21.12.2010
A Kansas State University professor is part of a national research team that discovered that streams and rivers produce three times more greenhouse gas emissions than estimated by the Intergovernmental Panel on Climate Change.

Through his work on the Konza Prairie Biological Station and other local streams, Walter Dodds, university distinguished professor of biology, helped demonstrate that nitrous oxide emissions from rivers and streams make up at least 10 percent of human-caused nitrous oxide emissions -- three times greater than current estimates by the climate change panel.

"This research deals with two important issues," Dodds said. "First, nitrous oxide is a potent greenhouse gas. Second, nitrous oxide also destroys ozone in the upper atmosphere, exposing us to more ultra violet radiation."

The research, "Nitrous oxide emission from denitrification in stream and river networks," appears in this week's Online Early Edition of the Proceedings of the National Academy of Sciences.

... more about:
»greenhouse gas »nitrous oxide

For the article, researchers from 23 institutions -- including K-State -- measured nitrous oxide production in 72 streams that drain native, urban or agricultural lands. Nine of those streams were in the Manhattan area, with three at Konza.

The level of nitrous oxide in streams and rivers is related to human activities that can release nitrogen into the environment, such as sewage runoff or crop fertilization. When this nitrogen reaches rivers and streams, it undergoes denitrification, a microbial process that converts nitrogren to nitrous oxide gas, called N2O, and an inert gas called dinitrogen, or N2.

As a greenhouse gas, nitrous oxide has global warming potential that is 300-fold greater than carbon dioxide. In the past century, concentration of atmospheric nitrous oxide has increased 20 percent, making it a strong contributor to climate change and ozone destruction.

"We show that river networks play an important role in how human nitrogen additions for crops influence the global environment," Dodds said.

The findings can lead to more effective mitigation strategies, Dodds said. Researchers suggest that nitrous oxide emissions can be reduced from river networks by changing agricultural and urban land-use practices, such as better management practices for fertilizers. By decreasing nitrogen input to watersheds, the production of nitrous oxide also diminishes.

Jake Beaulieu of the Environmental Protection Agency is the lead author of the paper, produced as part of a project headed by Patrick Mulholland of the Oak Ridge National Laboratory. From 2005 to 2007 the team received $3 million from the National Science Foundation to investigate nitrogen pollution in streams. K-State received $320,000 of the grant.

Walter Dodds | EurekAlert!
Further information:
http://www.k-state.edu

Further reports about: greenhouse gas nitrous oxide

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>