Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dodds contributes to new national study on nitrogen water pollution

21.12.2010
A Kansas State University professor is part of a national research team that discovered that streams and rivers produce three times more greenhouse gas emissions than estimated by the Intergovernmental Panel on Climate Change.

Through his work on the Konza Prairie Biological Station and other local streams, Walter Dodds, university distinguished professor of biology, helped demonstrate that nitrous oxide emissions from rivers and streams make up at least 10 percent of human-caused nitrous oxide emissions -- three times greater than current estimates by the climate change panel.

"This research deals with two important issues," Dodds said. "First, nitrous oxide is a potent greenhouse gas. Second, nitrous oxide also destroys ozone in the upper atmosphere, exposing us to more ultra violet radiation."

The research, "Nitrous oxide emission from denitrification in stream and river networks," appears in this week's Online Early Edition of the Proceedings of the National Academy of Sciences.

... more about:
»greenhouse gas »nitrous oxide

For the article, researchers from 23 institutions -- including K-State -- measured nitrous oxide production in 72 streams that drain native, urban or agricultural lands. Nine of those streams were in the Manhattan area, with three at Konza.

The level of nitrous oxide in streams and rivers is related to human activities that can release nitrogen into the environment, such as sewage runoff or crop fertilization. When this nitrogen reaches rivers and streams, it undergoes denitrification, a microbial process that converts nitrogren to nitrous oxide gas, called N2O, and an inert gas called dinitrogen, or N2.

As a greenhouse gas, nitrous oxide has global warming potential that is 300-fold greater than carbon dioxide. In the past century, concentration of atmospheric nitrous oxide has increased 20 percent, making it a strong contributor to climate change and ozone destruction.

"We show that river networks play an important role in how human nitrogen additions for crops influence the global environment," Dodds said.

The findings can lead to more effective mitigation strategies, Dodds said. Researchers suggest that nitrous oxide emissions can be reduced from river networks by changing agricultural and urban land-use practices, such as better management practices for fertilizers. By decreasing nitrogen input to watersheds, the production of nitrous oxide also diminishes.

Jake Beaulieu of the Environmental Protection Agency is the lead author of the paper, produced as part of a project headed by Patrick Mulholland of the Oak Ridge National Laboratory. From 2005 to 2007 the team received $3 million from the National Science Foundation to investigate nitrogen pollution in streams. K-State received $320,000 of the grant.

Walter Dodds | EurekAlert!
Further information:
http://www.k-state.edu

Further reports about: greenhouse gas nitrous oxide

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>