Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA differences may influence risk of Hodgkin disease

09.03.2009
A new analysis has found that certain variations in genes that repair DNA can affect a person's risk of developing Hodgkin disease. Published in the April 1, 2009 issue of CANCER, a peer-reviewed journal of the American Cancer Society, the study indicates that differences in these genes should be further investigated to better understand individuals' susceptibility to this type of cancer.

Proteins that repair damage to DNA are important for maintaining cells' health, particularly for preventing the accumulation of genetic damage that could increase the chances of becoming cancerous.

Researchers have found that, in the general population, there are variations in the genes that encode these DNA repair proteins. Research has also shown a link between reduced DNA repair and susceptibility to a variety of cancers, including breast, colon, and lung cancer.

To determine the potential role of genetic variants—or polymorphisms—in DNA repair genes in the development of Hodgkin disease, Dr. Randa El-Zein and colleagues at The University of Texas M.D. Anderson Cancer Center in Houston evaluated the relationship between polymorphisms in five DNA repair genes (XPC, XPD, XPG, XRCC1, and XRCC3) in a population of 200 Hodgkin disease patients and 220 healthy individuals.

These five genes are involved in different pathways that repair DNA by performing different modifications to damaged DNA. Changes in these genes can change the make-up and structure of the proteins that carry out these repair processes and therefore could influence how well DNA repair is performed.

The researchers found that variations in DNA repair genes may modify the risk of HD especially when interactions between the pathways are considered. Depending on the variant or combination thereof, people could be, up to four times more likely to develop the disease.

The authors concluded that "these data suggest that genetic polymorphisms in DNA repair genes may modify the risk of Hodgkin disease especially when interactions between the pathways are considered." They added that genetic variants in the different DNA repair pathways should be further evaluated to better understand their role in Hodgkin disease susceptibility in individuals.

David Sampson | EurekAlert!
Further information:
http://www.cancer.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>