Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Barcoding Can ID Natural Health Products

20.09.2012
DNA barcoding developed by University of Guelph researchers has proven up to 88 per cent effective in authenticating natural health products, according to a new U of G study.
The study appears in the latest issue of Food Research International.

It’s a crucial finding because the health product industry is under-regulated worldwide and mislabelling poses economic, health, legal and environmental implications, says study author Mehrdad Hajibabaei.

“Currently there is no other broadly applicable tool that can identify the species used in both animal and plant natural health products as rapidly and cost-effectively,” said Hajibabaei, a U of G integrative biology professor and director of technology development for the Guelph-based Biodiversity Institute of Ontario (BIO).

Up to about 80 per cent of people in developed countries use natural health products, including vitamins, minerals and herbal remedies. In Canada, these products have been regulated since 2004. But regulators face a backlog of licence applications, and thousands of products on the market lack a full product licence. In the U.S. and the U.K., regulatory problems involving natural health products have affected consistency and safety.

Authenticating natural product capsules or tablets -- containing dried fragments rather than whole specimens -- poses challenges.

DNA barcoding allows scientists to use short standardized regions of genetic material to identify species and compare them to reference genetic sequences, said Hajibabaei.

The technique works for all life stages and even for fragments of organisms, allowing scientists to ID even dried contents of a small pill.

“DNA barcoding provides a simple and efficient method for accurate identification and can play a key role in developing a more robust protocol for their regulation,” Hajibabaei said.

For the study, researchers tested 95 plant and animal products bought in Toronto and New York City. Samples included capsules, tablets, roots, extracts, teas and shredded products. The researchers also sampled for products containing widely used shark tissue or ginseng.

Fully 81 per cent of natural health products made from animals correctly matched their commercial label. The rest contained everything from cheaper alternatives to fragments of protected species. One product labelled as tiger shark fins actually contained a catfish species.

Several of the identified shark species are on the “red list” of the International Union for the Conservation of Nature.

Half of the plant products labelled as Korean ginseng – which is more expensive and is sold for different medicinal benefits than other types – were really American ginseng.

Besides Hajibabaei, the study was headed by Lauren Wallace, a former President’s Scholar at U of G and now a doctoral student at McMaster University. Wallace received a summer research fellowship from the Ontario Genomics Institute in 2010 to work on the BIO project.

Other researchers were Stephanie Boilard, now a technician in Hajibabaei’s lab; graduate students Shannon Eagle and Jennifer Spall; and post-doc Shadi Shokralla.

Three of the researchers were using DNA barcoding for the first time. “Ultimately, the study showcases the utility of DNA barcodes for use in the real world,” Hajibabaei said.

The BIO is a hub for barcoding research worldwide and leads the International Barcode of Life (www.ibol.org) project to develop a DNA barcode reference library. Another project based at the institute is Biomonitoring 2.0 (www.biomonitoring2.org), which uses barcoding and DNA sequencing for large-scale environmental assessment.

This research has been funded by the federal government through Genome Canada and the Ontario Genomics Institute.

Contact:
Prof. Mehrdad Hajibabaei
Biodiversity Institute of Ontario
Department of Integrative Biology
519-824-4120, Ext. 52487 or 56718
mhajibab@uoguelph.ca
For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, lhunt@uoguelph.ca, or Shiona Mackenzie, Ext. 56982, shiona@uoguelph.ca.

Campus News
Published by
Communications and Public Affairs
519-824-4120, x 56982 or 53338

Prof. Mehrdad Hajibabaei | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>