Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity aided mammals’ survival over deep time

24.04.2012
When it comes to adapting to climate change, diversity is the mammal’s best defense.
That is one of the conclusions of the first study of how mammals in North America adapted to climate change in “deep time” – a period of 56 million years beginning with the Eocene and ending 12,000 years ago with the terminal Pleistocene extinction when mammoths, saber-toothed tigers, giant sloths and most of the other “megafauna” on the continent disappeared.

“Before we can predict how mammals will respond to climate change in the future, we need to understand how they responded to climate change in the past,” said Larisa R. G. DeSantis, the assistant professor of earth and environmental studies at Vanderbilt who directed the study. “It is particularly important to establish a baseline that shows how they adapted before humans came on the scene to complicate the picture.”

Establishing such a baseline is particularly important for mammals because their ability to adapt to environmental changes makes it difficult to predict how they will respond. For example, mammals have demonstrated the ability to dramatically alter their size and completely change their diet when their environment is altered. In addition, mammals have themobility to move as the environment shifts. And their ability to internally regulate their temperature gives them more flexibility than cold-blooded organisms like reptiles.

The study, which was published on Apr. 23 in the journal Public Library of Science One, tracked the waxing and waning of the range and diversity of families of mammals that inhabited the continental United States during this extended period. In taxonomy, species are groups of individuals with common characteristics that (usually) can mate; genera are groups of species that are related or structurally similar and families are collections of genera with common attributes.

Scientists consider the fossil record of mammals in the U.S. for the study period to be reasonably complete. However, it is frequently impossible to distinguish between closely related species based on their fossil remains and it can even be difficult to tell members of different genera apart. Therefore the researchers performed the analysis at the family level. They analyzed 35 different families, such as Bovidae (bison, sheep, antelopes); Cricetidae (rats, mice, hamsters, voles); Equidae (horses, donkeys); Ursidae (bears); Mammutidae (mammoths); and Leporidae (rabbits and hares).

The study found that the relative range and distribution of mammalian families remained strikingly consistent throughout major climate changes over the past 56 million years. This period began with an extremely hot climate, with a global temperature about six degrees hotter than today (too hot for ice to survive even at the poles) and gradually cooled down to levels only slightly higher than today. It was followed by a dramatic temperature drop and a similarly abrupt warming and finished off with the Ice Ages that alternated between relatively cold glacial and warm interglacial periods.

“These data clearly show that most families were extremely resilient to climate and environmental change over deep time,” DeSantis said.

Horses were consistently the most widely distributed family from the Eocene to the Pliocene (and remained highly dominant, just not number one, in the Pleistocene). In contrast, families with more restricted ranges maintained lower range areas. Thus, their work demonstrates that mammals maintained similar niches through deep time and is consistent with the idea that family members may inherit their ranges from ancestral species. The idea that niches are conserved over time is a fundamental assumption of models that predict current responses of mammals to climate change.

The analysis also found a link between a family’s diversity and its range: Family’s with the greater diversity were more stable and had larger ranges than less diverse families.

“Diversity is good. The more species a family has that fill different niches, the greater its ability to maintain larger ranges regardless of climate change,” said DeSantis.
While most families during certain periods of time yielded either gains in species/genera (e.g., Oligocene to Miocene) or losses (Miocene to Pliocene), these changes were remarkably consistent through time with overall gains or losses in one genera typically yielding a gain or loss in of about two species.

Although the extent of family ranges remained relatively constant, the study found that these ranges moved south and east from the Eocene to the Pleistocene. That is most likely a response to the general climate cooling that took place during the period. However, southeastern movement of ranges from the Pliocene to the Pleistocene may also be complicated by the influx of South American animals when the Isthmus of Panama was formed. This triggered a tremendous exchange of species that has been labeled “The Great American Interchange.” As a result, some of the southern movement of families’ ranges may have been due to the influx of South American mammals, like the sloth and armadillo, moving north, the researchers cautioned.

The study also looked for evidence that families containing megafauna or other species that went extinct during the terminal Pleistocene extinction (also known as the Quaternary or Ice Age extinction) might have been in decline beforehand, but failed to find any evidence for any such “extinction prone” families. If climate change was the culprit, DeSantis and her team expect to see differences between families containing megafauna and those composed of smaller animals. However, the fact that they didn’t find such evidence cannot completely rule out this possibility.

The role that diversity plays in mammalian adaptation is particularly important because mammal species have been going extinct in record numbers for the past 400 years. In a 2008 report, the International Union for the Conservation of Nature predicted that one in four species of land mammals in the world faces extinction. As a result, the diversity of mammalian families is declining at a time when they need it the most to cope with a rapidly changing climate.

Co-authors on the paper were graduate students Rachel A. Beavins Tracy, Cassandra S. Koontz, John C. Roseberry and Matthew C. Velasco. The project was supported by funds from Vanderbilt University.

Visit Research News @ Vanderbilt for more research news from Vanderbilt.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>